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Cellular senescence (CS) is a state of irreversible cell cycle arrest, and the accumulation of senescent cells
contributes to age-associated organismal decline. The detrimental effects of CS are due to the senescence-
associated secretory phenotype (SASP), an array of signaling molecules and growth factors secreted by
senescent cells that contribute to the sterile inflammation associated with aging tissues. Recent studies,
both in vivo and in vitro, have highlighted the heterogeneous nature of the senescence phenotype. Single-
cell transcriptomics has revealed that oncogene-induced senescence (OIS) is characterized by the presence
of subpopulations of cells expressing different SASP profiles. We have generated a comprehensive dataset
via single-cell transcriptional profiling of genetically homogenous clonal cell lines from different forms of
senescence, including OIS, replicative senescence, and DNA damage-induced senescence. We identified
subpopulations of cells that are common to all three major forms of senescence and show that the expres-
sion profiles of these subpopulations are driven bymarkers formerly identified in individual forms of sen-
escence. These common signatures are characterized by chromatinmodifiers, inflammation, extracellular
matrix remodeling, and ribosomal protein gene expression (measured at the RNA level). The expression
patterns of these subpopulations recapitulate primary and juxtacrine secondary senescence, a phenome-
non where a pre-existing (primary) senescent cell induces senescence in a neighboring (secondary) cell
through cell-to-cell contact. Hence, our results demonstrate that the formation of juxtacrine secondary
populations of cells is common to multiple types of senescence and occurs in competition with primary
senescence. Finally, we show that these subpopulations show differential susceptibility to the senolytic
agent Navitoclax, suggesting that senolytic agents targeting the apoptotic pathways may be clearing only
a subset of senescent cells based on their inflammatory profiles.

Introduction

Cellular senescence (CS) is a programmed stress response that
leads to a cell’s permanent exit from the cell cycle and can be
induced by a variety of factors including telomere attrition, onco-
gene activation, oxidative stress, and DNA damaging agents1–3.
Although CS comes in different forms, an established senescent
pathway involves a persistent DNA-damage response that leads
to the activation of the tumor suppressor protein 53 (P53), which,
in turn, activates the cyclin-dependent kinase inhibitor gene
CDKN1A. The translated protein encoded by the CDKN1A gene,
p21, holds the cell in cell cycle arrest until upregulation of the
cyclin-dependent kinase inhibitor gene CDKN2A, which encodes
the p16 protein thatmaintains the cell in an irreversible senescent
state1,4. During senescence, the cell undergoes global epigenetic
changes including dramatic chromatin alterations and increased
expression of an array of extracellular remodeling proteins,
growth factors, and inflammatory molecules such as interleukins
and interferons that compose the senescence-associated secretory

phenotype (SASP)4–7. SASP leads to inflammation disrupting the
tissue microenvironment, reinforces the senescent phenotype by
contributing to the cell cycle arrest, and can induce paracrine sen-
escence in normal cells8,9.

Studies describing the heterogeneity of senescent cells have
shown that there are different forms of SASP. For example, one
form is dominated by transforming growth factor beta (TGF-beta)
signaling10–12. TGF-beta-dominated profiles are characterized by
extracellular matrix remodeling, collagen deposition, and by
the expression of growth factors such as the connective tissue
growth factor (CTGF)10,13,14. Another form of SASP, however,
shows a more pro-inflammatory profile with higher levels of
interleukins such as IL1A, IL1B, IL6, and other genes regulated
by Nuclear factor kappa-light-chain-enhancer of activated B cells
(NFKB)10–12,15. In oncogene-induced senescence (OIS), the preva-
lence of these profile changes as cells persist in the senescent
state: TGF-beta signaling is typically higher in the earlier stages
of senescence, whereas in the later stages senescent cells transi-
tion to a pro-inflammatory phenotype10.
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Not only do transcriptional profiles change over the course of
time, but they can also characterize different types of senescent
states. For instance, TGF-beta-dominated SASP profiles are preva-
lent in notch-induced senescence (NIS) 10–12, which occurs when
a primary senescent cell (or a pre-existing senescent cell) makes
direct contact and activates the notch signaling pathway in a
neighbor cell, causing the spread of senescence through juxta-
crine signaling and thereby creating a secondary senescent cell.
OIS cells can act as the primary senescence source, and display
more pro-inflammatory SASP profiles with higher levels of inter-
leukins and NFKB regulated genes in contrasts with the anti-
inflammatory TGF-beta-dominated profiles of NIS cells11.

CS is an inherently heterogeneous state, as it can be cell type-
and insult-dependent1,4,16. However, most of the data describing
senescence have been collected using bulk sequencing technolo-
gies that measure average gene expression across large hetero-
geneous pools of cells and is blind to cell-to-cell transcriptional
variability. With the advent of single-cell transcriptomics, it
has become clear that distinct subpopulations contribute to the
population-wide average11,17. Despite the limited single-cell
transcriptional data currently available for senescent cells, it is
becoming increasingly clear that senescent cells are subject to
significant transcriptional diversity10,16–18. Consistent with this
transcriptional heterogeneity, subpopulations of senescent cells
have been observed in single-cell transcriptomic studies from
fibroblasts and endothelial cell lines11,17,18. For example, using
single-cell RNA-seq, Teo et al showed that two subpopulations
coexist in the OIS cultures11. One population possessed the famil-
iar OIS transcriptional profile (primary senescence), whereas the
second population, which was also senescent, possessed SASP
profiles that were growth factor rich and dominated by TGF-beta
signaling, and was composed of NIS cells (secondary senescence).

The senescent phenotype is characterized by chromatin modi-
fications, DNA-damage response pathways, and SASP profiles1,3.
However, an in-depth description of how these different aspects
vary across senescent cell populations is still lacking17,19. Here,
we used single-cell transcriptomics to identify subpopulation of
senescent cells in genetically homogenous clonal cell lines with
a inducible HRAS:G12V transgene that was activated only in
OIS cultures. This strategy ensures that the subpopulations we
observe are not a caused by variability of the number and genomic
location of the transgene constructs, and the consequent variabil-
ity in the expression levels of the transgene across cells. This
experimental design allowed us to conduct a novel, unified analy-
sis of senescent cell heterogeneity across the major forms of
senescence.

Materials and Methods
Single-cell RNA sequencing

Human diploid fibroblast cells were trypsinized and centri-
fuged at 500 rcf for 10 minutes. Cells were resuspended in cold
phosphate-buffered saline and passed through a 40 μM Flowmi
Cell Strainer. Cells were then counted and loaded onto the 10×
chromium using V2 chemistry of 10× genomics’ 3-prime single-
cell reagents with version 2 chemistry. Libraries were prepared
according to the manufacturer protocol and sequenced on a Hi-
Seq platform at GeneWiz with manufacture recommend sequenc-
ing specifications. Senescent libraries were subjected to two
rounds of sequencing. All single-cell RNA-seq datasets generated
in this work have been deposited in the Gene Expression Omnibus
database with accession number GSE173879.

scRNA-seq data processing and filtering
Cell-specific barcodes were error corrected and identified from

fastq files, and data were aligned to the hg19 reference genome
using CellRanger V2.1 Command Line tools. For measuring
expression of neo selectable marker, a second round of alignment
was conducted to the hg19 reference genome along with the
neomycin sequence from pLNCX2. Secondary analysis was con-
ducted using Seurat R package version 319,20. Data generated
from each cell population (growing, replicative senescence
[RS], OIS, and DNA damage-induced senescence [DDIS] cells)
were filtered separately. Stringent filteringmethods were applied
using parameters described in the literature such as the number of
genes detected, number of unique transcripts detected, percent
mitochondrial genes detected, and percent ribosomal protein
RNA detected19,20. To filter cells, we refrained from regressing
out the effects of the abovementioned quality control metrics
when implementing clustering protocols. Then, we were able
to cluster the majority of “low-quality” cells separately from
the good-quality cells. Low-quality clusters were then discarded.

Clustering scRNA-seq data
Filtered datasets were merged together, scaled, and re-

normalized using Seurat19,20. In this case, the number of genes
detected, number of unique transcripts detected, and percent of
mitochondrial genes detected were all scaled out using Seurat’s
ScaleData method with the var.to.regress parameter, thereby
ensuring that any conclusions drawn from downstream analysis
were driven by variable gene expression and not technical factors
such as cell-to-cell variability in sequencing depth. Next, principal
component analysis (PCA) was conducted, and, depending on the
dataset, the top 20–30 principal components were fed into Seurat’s
shared nearest neighbor-based Louvain clustering algorithm.

Differential expression analysis
Differential expression was performed using Seurat with

model-based analysis of single cell transcriptomics (MAST) meth-
odology21,22. Cluster 1 was compared to cluster 2 in each type of
senescence.

Ingenuity pathway analysis (IPA)
The computed log fold changes of significantly differentially

expressed genes (false discovery rate less than 0.05) were used
in IPA by Qiagen. Upstream regulators were plotted according
to their z score and q value of their overlap using GGplot2 R pack-
age. Q values for upstream regulators were computed using
p.adjust function in base R.

Gene set enrichment analysis (GSEA)
Computed log fold changes of genes differentially expressed

between clusters 1 and 2were used in a pre-rankedGSEA analysis.
Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were downloaded from MSigDB23.
GO terms, included custom SASP lists, were based on the existing
literature24–30. KEGG pathways for primary and secondary senes-
cence were generated by Teo et al and were added to the list of
KEGG pathways11. Bar charts were generated using ggplot2,
and tables were generated in Microsoft Excel.

Navitoclax experiments and analysis
Senescent cells were treated with 1 μM of Navitoclax for three

days. For OIS and DDIS samples, 4OHT and Etoposide were
removed from the growth media before Navitoclax treatment.
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Dimethyl sulfoxide (DMSO)-treated cells served as controls. Cells
recovered in regular growth media supplemented with DMSO
overnight before being harvested for scRNA-seq. Clusters were
identified in DMSO-treated controls. p values were calculated
using the chisq.test function in R.

Retroviral infections of ERT2-HRAS:G12V
The 293T cells were co-transfected with plasmid DNAs of a ret-

roviral vector and the helper vectors using FuGENE HD
(Promega). Medium was collected 24, 36, and 48 hours later
for infection of LF1 cells. The vector backbone was clonetech
pQCXIN (Addgene Cat Number 631514). Clonal cell lines were
generated through serial dilution in 500 μg/mL of G418.
Colonies generated from single cells were selected and further
propagated.

Cell culture and senescence induction
We sequenced proliferating female human diploid fibroblast

cells (LF1 cells) along with populations of LF1 cells that were
induced into RS, OIS, and DDIS. LF1 cells were obtained from
the Sedivy lab. All cell populations were generated with a clonal
cell line that possessed an ERT2-HRAS:G12V transgene. For pro-
liferating, populations cells were passaged in regular growth
media and harvested at 60%–80% confluency. Meanwhile, repli-
cative senescent cells were passaged in regular growth media
until replicative exhaustion. DDIS was induced with addition of
etoposide at 40 μM for three weeks to regular growth media.
OISwas induced by adding 4-Hydroxytamoxifen (4-OHT) to regu-
lar growth media, at which point the cells underwent a hyperpro-
liferative phase before senescing after six days. Regular growth
media consisted of Ham’s F10, 15% Fetal Bovine Serum (FBS),
and 1× of penicillin streptomycin and glutamine. Cellsweremain-
tained at 37°C at 5% CO2 and 2.5% O2.

Results
Single-cell transcriptional profiling of clonal lines

We performed single-cell RNA sequencing using the 10× chro-
miummicrofluidics platform to study cell-to-cell gene expression
heterogeneity in RS, OIS, and DDIS. All cell populations were gen-
erated using female human diploid fibroblast cells (LF1 cells) and
were derived from a clonal cell line that possessed a 4-OHT induc-
ible HRAS:G12V transgene (Fig. 1A). Although subpopulations of
senescent cells had been identified in OIS cultures, little is known
about the cell-to-cell diversity in other forms of senescence. We
hypothesized that the diversity found in OIS cultures is a phe-
nomenon common across multiple forms of senescence. To test
this hypothesis, we sequenced different types of senescence in dif-
ferent cell culture conditions. For full list of culture conditions
sequenced for this study, see Table 1. For results in the main
figures in this paper, we focus on the three of the datasets com-
prising RS, OIS, and DDIS cells. Analysis of the remaining data-
sets, which revealed strikingly similar diversity, is shown in the
supplemental figures. Specifically, for OIS cultures we have sam-
ples that were in 4-OHT, whereas others were removed from
4-OHT prior to sample collection. This helped us to determine
how 4-OHT affected diversity. For RS, we sequenced two clonal
cells lines, referred to as RS and RS Rep2. This let us show that
the observed heterogeneity was not due to the use of a specific
clonal cell line but instead could be recapitulated across multiple
clonal lines. Moreover, for OIS samples we also performed 5 0 end

sequencing. This let us show that the heterogeneitywe discovered
in our datasets is not due to a 3 0 sequencing bias.

Because all of our datasets were generated with cells that were
infected with an HRAS:G12V transgene, controlling for variable
expression of this transgene is important if we are to draw conclu-
sions regarding the formation of subpopulations in senescence.
Without clonal cell lines, the transgene would be expressed at
varying levels across the cells, and because HRAS is upstream
of many important molecular pathways that are heavily impli-
cated in senescence, then this would have been a confounding fac-
tor in our experiments. Our approach contrasts previous studies
which conducted scRNA-seq on non-clonal cell lines that variably
express the transgene11. Moreover, working with clonal cell lines
ensured that any variability in gene expression that we observed
was a product of the senescent phenotype and not due to a pre-
existing heterogeneity in the proliferating cell populations.

For all types of senescence, we noticed the presence of a large
populations of cells that showed signs of low-quality data.
These included higher than average expression of ribosomal pro-
tein genes in combination with the low number of genes being
expressed and low number of unique molecular identifiers
(UMIs). In addition, we saw a different and smaller subpopulation
of cells with the high number of mitochondrial reads. Our prolif-
erating control cells did not possess these subpopulations in large
numbers. Taken together, these observations suggest that senes-
cent cells are more fragile to the microfluidics used to generate
these libraries. For all datasets, we filtered out these low-quality
droplets and the remainder of our analysis focused on the higher-
quality cells which we retained. See Materials and Methods
section and Supplemental Figure 7, for a detailed explanation
of our filtering strategy. RS, OIS, and DDIS cultures showed clear
senescent gene expression patterns including upregulation of
CDKN2A and downregulation of cell cycle genes, HMGB1, and
HMGB2 (Figs. 1C, 2H,J).

All datasets were merged using the Seurat Bioconductor
Package19,20. Ourfiltered dataset included a total of 6108 cells split
across multiple types of senescence and conditions. We projected
individual cells’ transcriptional profiles onto two dimensions using
the Uniform Manifold Approximation and Projection reduction
and observed a clear separation between senescent and growing
cells. Computing a cell cycle score with Seurat shows that the pro-
liferating population is composed of cells in the S, G2/Mitosis, and
G1/G0 phases of the cell cycle. We noticed that the different types
of senescent cells are positionedmore closely to control cells in the
G1/G0 phase, showing that the senescent state as a distinct and
final cell cycle phase (Fig. 1B).

Clustering reveals two subpopulations in clonal
cell lines

We combined each senescent dataset along with an equal-sized
subpopulation of control cells (Fig. 2A). Clustering was per-
formed on the resulting datasets (see Materials and Methods sec-
tion), and in all cases, we could identify subpopulations of
senescent cells. For each type of senescence, we call the subpopu-
lations “-1” and “-2” (Fig. 2B–G). We analyzed the expression of
the transgene between the two clusters by aligning to the amino
3 0-glycosyl phosphotransferase (neo) selectable marker gene. We
saw that the transgene is much more evenly expressed between
the subpopulations we observe in cultures generated from clonal
cell lines when compared to previous published experiments
which did not use clonal lines (Supplemental Fig. 6). In addition,
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when combined, the cluster 2 cells tend to bemore similar to each
other across the three forms of senescence than to cells in cluster 1
(Supplemental Fig. 9).

Subpopulations are distinguished by TGF-beta
signaling, DNA-damage response, and
inflammatory pathways

We performed a differential expression analysis between clus-
ters 1 and 2 in each type of senescence using the Seurat package

with MAST methodology21,22. The computed log fold changes of
genes passing a false discovery rate of 0.05 were used to identify
potential upstream regulators via the IPA (Fig. 3). We plotted the
upstream regulators according to two dimensions. On the x-axis
are the computed z scores, which show the direction of regula-
tion. On the y-axis is the negative logarithmic transformation
of their false discovery rate, which determines the upstream reg-
ulators whose gene sets show a statistically significant overlap
with the list of differentially expressed genes in the data.

(A)

(B)

(C)

Figure 1. (A) Schematic showing generation of clonal cell lines with HRAS:G12V transgene and overall experimental design. (B) Uniform Manifold
Approximation and Projection (UMAP) plots showing all datasets generated for this study (left) and their predicted stage in the cell cycle (right).
(C) Violin plots showing downregulation of cell cycle genes (used to generate G2 and S scores) and chromatin modifiers HMGB and HMGB2 in senescent
cells. Meanwhile, there is an upregulation of CDKN2A and CDKN1A in senescent cultures.

4 AgingBio, 1, 1–13, June 27, 2023



Using a z score cutoff 1.64 and −log q-value cutoff of 1.301, we
were able to identify statistically significant upstream regulators.
We noticed that the predicted upstream regulators were very
similar for each type of senescence. More specifically, cluster 1
showed upstream regulators TP53, a marker for DNA
damage13,31–33. We also saw Interferon term IFNA2, suggesting
a more pro-inflammatory profile30. Meanwhile, cluster 2 showed
upstream regulators corresponding to TGF-beta signaling and
extracellular matrix remodeling. These regulators included
TGF-beta receptors, TGF-beta1–3, and several Suppressor of
Mothers against Decapentaplegic (SMAD) proteins that are trans-
ducers for TGF-beta signaling. We also performed a comparison
analysis for each type of senescence and noticed a strong similar-
ity in the z scores for the upstream regulators between all types of
senescence that we sequenced (Fig. 3). We also confirmed the
existence of these subpopulations in all other senescent datasets
(see Supplemental Fig. 1, for senescent markers, supplemental
tables provided in Excel sheet for GSEA and KEGG terms, and
Supplemental Fig. 8 for IPA upstream regulators).

Next, we took the log fold changes between clusters 1 and 2 for
each type of senescence and conducted a pre-ranked GSEA with
GO terms and KEGG pathways24–29. We plotted the normalized
enrichment scores for statistically significant (p< 0.05) GO terms
and KEGG pathways. We noticed that subpopulations in cluster 1
showed enrichment for terms related to DNA-damage response
pathways such as telomere organization, mismatch repair, base
excision repair, and DNA-ligation. Moreover, there was also an
enrichment for SASP and inflammation pathways including our
custom SASP lists (see Materials and Methods section, for details
on custom SASP lists), inflammatory response, cytokine inter-
actions, viral life cycle, neutrophil migration, and viral transcrip-
tion (Tables 2–4).

In contrast, cells in cluster 2 showed higher levels of extra cellular
matrix activity including terms related to integrin signaling path-
ways, extracellular organization, cell adhesion, collagen organiza-
tion, Major Histocompatibility Complex (MHC) class 1 antigen
presentation, and cell junction organization. Cluster 2 was also
enriched for terms related to TGF-beta signaling such as regulation
of TGF-beta, SMADprotein signaling, Wingless-Type (WNT) signal-
ing, and anti-inflammatory gene activity (Tables 2–4). Collagen
deposition, extra cellular matrix remodeling, and WNT signaling
are all regulated or co-activated by TGF-beta signaling13,14,31,34.
Therefore, this is consistent with the expression profile of cluster
2 cells as being dominated by TGF-beta signaling pathways. These
GO terms and KEGG pathways were also verified in all other data-
sets we collected (Supplemental Tables provided in Excel sheet).

Subpopulations resemble primary and secondary
senescent cells

We investigated whether there were any differences in the
expression levels of important chromatin modifiers. We found that
High Mobility Group AT-Hook 1 (HMGA1) is consistently upregu-
lated in cluster 1 (Fig. 3A). The HMGA1 gene encodes a highly
abundant chromatin-associated protein that has been shown to
organize chromatin architecture in senescence and is critical for
the onset of OIS. Moreover, previous studies have shown that
HMGA1 is expressed higher inOISwhen comparedwithNIS,which
is characterized by increased levels of TGF-beta signaling. This dif-
ference in HMGA1 expression is known to be responsible for many
of the differences in chromatin architecture that exist between OIS
and NIS cells, and many of these differences are predictive of gene
expression10–12. These studies comparing NIS and OIS, along with
the fact that we see TGF-beta signaling and elevated HMGA1

Table 1. List of single-cell transcriptomics datasets used in the analysis.

Dataset
Name Condition 5 0 or 3 0

Clonal
Line

Used in Main Text or
Supplementary Figures

DDIS Etoposide treated for three weeks. 3 0 1 Main text

Etoposide was removed and replaced with DMSO for the last three days

OIS 4-OHT treated for three weeks. 3 0 1 Main text

4-OHT was removed and replaced with DMSO for the last three days.

RS Regular growth media 3 0 1 Main text

RS Rep-2 Regular growth media 3 0 2 Supplementary

OIS +Nav 4-OHT treated for three weeks. 3 0 1 Supplementary

4-OHT was removed and replaced with Navitoclax dissolved in DMSO
for the last three days.

OIS 5’ 4-OHT treated for three weeks. 5 0 1 Supplementary

4-OHT was removed and replaced with DMSO for the last three days.

OIS +Nav 5’ 4-OHT treated for three weeks. 5 0 1 Supplementary

4-OHT was removed and replaced with Navitoclax dissolved in DMSO
for the last three days.

DDIS+Nav Etoposide treated for three weeks. 3 0 1 Supplementary

Etoposide was removed and replaced with Navitoclax dissolved in
DMSO for the last three days.

OIS in 4-OHT 4-OHT treated for one month. 4-OHT was in the media up until cells
were harvested.

3 0 1 Supplementary

Growing Regular growth media 3 0 1 and 2 Main text

4-OHT, 4-Hydroxytamoxifen; DDIS, DNA damage-induced senescence; OIS, oncogene-induced senescence; RS, replicative senescence.
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expression arising from two distinct subpopulations in our scRNA-
seq data, suggests that this HMGA1 expression is elevated only in
the senescent cells where TGF-beta expression is low and levels
of DNA damage are high, which we would expect from a primary
senescent cell. This suggests that cells induced into RS, OIS, and
DDIS develop subpopulations that resemble primary and secondary
senescence, which before was only demonstrated in OIS.

Because HMGA1 is differentially expressed between OIS and
NIS cells, we decided to compare our data with the single-cell

transcriptional profiles from Teo et al11, as they showed that
OIS cultures generated from non-clonal cell lines are composed
of primary and secondary senescent subpopulations. For all four
datasets (RS, OIS, DDIS, and Teo et al), we see differential expres-
sion of collagen genes, TGF-beta response genes, and HMGA1
which are markers for primary and secondary senescence (see
Fig. 3A, for our data, and Supplemental Fig. 4, for Teo et al data).
Moreover, the expression of HMGA1 is anti-correlated with TGF-
beta signaling.We then ran a KEGG analysis with terms generated

(A)

(B) (E) (H)

(C) (F) (I)

(D) (G) (J)

Figure 2. (A) Schematic showing the process for analyzing each senescent dataset separately. Oncogene-induced senescence (OIS) data were chosen for
this illustration, but the same process was used for all datasets. (B–D)UMAP plots showing DNA damage-induced senescence (DDIS), OIS, and replicative
senescence (RS) clusters. (E–G) The corresponding cluster trees. (H–J) Violin plots showing similar levels of senescence markers for each senescent
subpopulation (ns: p> 0.05; *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001).
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by Teo et al relating to primary and secondary senescent pheno-
types, we see that our subpopulations are enriched for these
terms, referred to as “UP_primary” and “UP_secondary,” respec-
tively (see Table 1, for main text data, and Supplemental
Tables provided in Excel sheet for all other datasets). Like with
our own data, we conducted a GSEA analysis for the data gener-
ated by Teo et al and identified very similar GO terms and KEGG
pathways. Cluster 1 is enriched for SASP, inflammation, and
DNA-damage response pathways. Meanwhile, cluster 2 is
enriched for extracellular matrix remodeling, collagen deposi-
tion, and WNT signaling (see Supplemental Tables provided
in Excel sheet).

Subpopulations show differential sensitivity to the
senolytic agent Navitoclax

We wanted to determine if we could characterize the subpopu-
lation of cells that are more resistant to treatment with BH3mim-
etics.We treatedDDIS andOIS cells with 1 μMof the BH3mimetic
Navitoclax for three days35. Cells were then harvested and run on
the 10× chromium platform to generate single-cell libraries along
with DMSO-treated controls; see Materials and Methods section
and Figure 4A, for Navitoclax experimental details. Data were
aligned and filtered as previously described. We identified
the clusters 1 and 2 in Navitoclax-treated samples as well
(Fig. 4B–G). We observed that Navitoclax preferentially induced

(A)

(B)

(C)

Figure 3. (A) Violin plots showing expression of marker genes for primary and secondary senescence for clusters 1 and 2 in DDIS, OIS, and RS cells.
HMGA1 is known to be higher in primary OIS (Teo et al, 2019), and the remaining genes are known to be higher in secondary notch-induced senescence.
(B) Volcano plots showing predicted upstream regulators (Ingenuity Pathway Analysis) for cluster 1 (red) and cluster 2 (blue) for each type of senescence.
Regulators are plotted according to their z score on the x-axis, which shows if they regulate cluster 1 or cluster 2. Positive values indicate an upstream
regulator for cluster 1 and negative for cluster 2. The “−log q value of overlap” is plotted on the y-axis. This is the negative logarithmic transformation of
the false discovery rate, which determines the upstream regulators whose gene sets show a statistically significant overlap with the list of differentially
expressed genes in the data. Gray lines indicate significance values. Upstream regulators located above the horizontal line and to the left of the vertical
left gray line or right of the vertical right gray line have significant z scores and false discovery rates. (C) Heatmap showing z scores for the upstream
regulators for each type of senescence. Positive values indicate an upstream regulator for cluster 1 and negative for cluster 2 (ns: p> 0.05; *p≤ 0.05;
**p≤ 0.01; ***p≤ 0.001; ****p ≤ 0.0001).
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apoptosis in DDIS and OIS cells in cluster 2, the subpopulation
enriched for a secondary senescent phenotype, TGF-beta signal-
ing, extracellular matrix remodeling, and lower levels of DNA
damage (Fig. 5). Moreover, we also saw this phenomenon in
OIS cells that were sequenced from the 5 0 end, although this data-
set did not reach statistical significance (Supplemental Fig. 3).
This suggests that TGF-beta signaling in senescence may sensitize
cells to drug-induced apoptosis, emphasizing the translational
importance of these subpopulations. In general, these data dem-
onstrate that for the development on senolytic agents, it is impor-
tant to consider the inflammatory profile of the target cell.

Subpopulations differentially express collagen and
ribosomal protein genes

Another feature we noticed in our analysis is that cells belong-
ing to cluster 1 significantly accumulate ribosomal protein tran-
scripts. Altered ribosome biogenesis is implicated heavily in

senescence36, and we extend these findings further by showing
that it is a process differentially regulated between subpopula-
tions. We plotted cells according to their expression of ribosomal
genes on the x-axis and expression of collagen genes on the y-axis
and saw a strong anticorrelation for all datasets, suggesting that
cluster 2 and secondary senescent cells are characterized by
the high levels of collagen genes, and cluster 1 cells express high
levels of ribosomal protein genes (Fig. 5).

Subpopulations expression profiles are identified in
senescent endothelial cells

Because we identified these subpopulations in multiple forms
on senescence in our clonal cell lines in addition to the IMR90

Table 2. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for oncogene-induced senescence
(OIS).

GSEA/KEGG NES p value

viral_life_cycle 2 0

Up_primary_secondary_(KEGG) 1.9 0

intrinsic_apoptotic_signaling_by_DNA_damage 1.8 0

GO_SHELLY_NATURE_SASP 1.7 0.006

p53_signaling 1.7 0

GO_CAMPISI_V2 1.6 0.027

chemokine_signaling 1.6 0.024

positive_inflammatory_response 1.4 0.049

apoptotic_signaling_pathway 1.3 0.018

cytokine_receptor_interaction_(KEGG) 1.3 0.032

regulation_of_actin_cytoskeleton_(KEGG) −1.6 0

cell_adhesion_molecules_(KEGG) −1.6 0.004

actin_filament_based_process −1.7 0

actin_filament_organization −1.7 0

cell_junction_assembly −1.7 0

negative_regulation_of_cytokine −1.7 0.002

positive_wound_healing −1.7 0

regulation_of_wound_healing −1.7 0

response_to_wounding −1.7 0

wound_healing −1.7 0

actomyosin_structure_organization −1.8 0

cell_junction_organization −1.8 0

cell_matrix_adhesion −1.8 0

cell_substrate_adhesion −1.8 0

substrate_adhesion_cell_spreading −1.8 0

collagen_fibril_organization −1.9 0

extracellular_structure_organization −1.9 0

ECM_receptor_interaction_(KEGG) −1.9 0

Up_secondary_primary_(KEGG) −2.2 0

GSEA results for cluster 1 versus cluster 2 for OIS samples are shown. Positive
normalized enrichment scores (NESs) are pathways/gene sets enriched in
cluster 1, and negative NES are enriched in cluster 2.

Table 3. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for replicative senescence (RS).

GSEA/KEGG NES p value

viral_life_cycle 2 0

IL1_secretion 1.7 0.012

interferon_response 1.6 0.02

NIK_NF_KappaB_signaling 1.6 0

IL1B_production 1.5 0.021

IL1_production 1.5 0.031

innate_immune_activation 1.4 0.011

DNA_damage_signaling 1.4 0.037

KANNAN_TP53_TARGETS_UP 1.4 0.019

positive_innate_immune_response 1.3 0.026

p53_signaling 1.3 0.021

TNF_signaling 1.3 0.028

Up_primary_secondary_(KEGG) −1 0.389

NK_cell_mediated_cytotoxicity_(KEGG) −1.3 0.039

response_to_TGFbeta −1.5 0

LABBE_WNT3A_TARGETS_UP −1.5 0

TGFbeta_production −1.6 0.003

response_to_wounding −1.6 0

actin_filament_based_movement −1.7 0

actin_filament_organization −1.7 0

negative_regulation_of_cytokine −1.7 0.001

regulation_of_wound_healing −1.7 0

substrate_adhesion_cell_spreading −1.7 0

wound_healing −1.7 0

regulation_of_actin_cytoskeleton_(KEGG) −1.7 0

actin_filament_based_process −1.8 0

cell_junction_assembly −1.8 0

cell_junction_organization −1.8 0

cell_substrate_adhesion −1.8 0

cell_adhesion_molecules_(KEGG) −1.8 0

Up_secondary_primary_(KEGG) −1.8 0

extracellular_structure_organization −1.9 0

ECM_receptor_interaction_(KEGG) −1.9 0

GSEA results for cluster 1 versus cluster 2 for RS samples are shown. Positive
normalized enrichment scores (NESs) are pathways/gene sets enriched in
cluster 1, and negative NES are enriched in cluster 2.
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experiments conducted by Teo et al, we wanted to verify if these
diversity profiles existed in another cell type. We downloaded
single-cell transcriptomic datasets generated from Human
Umbilical Vein Endothelial Cells (HUVEC) cell lines18. These data
were collected from cells as they transitioned into RS. This means
that there weremanymore subpopulations in the HUVEC dataset,
and it was difficult to distinguish senescent form pre-senescent
cells. However, we were still able to show major features of the
diversity we saw in our own data.

We wanted to see if HUVEC cells expressing higher level of
HMGA1 expressed low levels of collagen. We plotted cells accord-
ing to their expression of HMGA1 (markers for cluster 1 and pri-
mary senescence) on the x-axis and expression of collagen genes

(marker of cluster 2 and secondary senescence) on the y-axis.
We saw an anticorrelation between these two features. We also
plotted cells according to the number of reads mapping to riboso-
mal protein genes (whichwe saw higher in cluster 1) on the x-axis
and saw a strong anticorrelation with cells that expressed high
level of collagen reads. Moreover, reads mapping to ribosomal
protein genes also anticorrelates with cells that have the high
number of reads mapping to collagen genes. See Supplemental
Figure 5, for this analysis.

Discussion

Our analysis compares subpopulations of senescent cells across
different forms of senescence. We observe that DDIS, RS, and OIS
cells are composed of two subpopulations. For our experiments, we
used clonal cell lines that were infected with a 4-OHT HRAS:G12V
inducible transgene that was only activated in OIS cultures. The
fact that we have discovered subpopulations of senescent cells
being generated from clonal cell lines suggests that the formation
of these subpopulations is an inherent property of the senescent
phenotype, and not due to a pre-existing heterogeneity that was
present in proliferating cells. Therefore, these results offer addi-
tional insight into the formation of senescent cell subpopulations
when compared with pre-existing scRNA-seq studies that have
been generated from non-clonal cell lines. For instance, scRNA-
seq studies on OIS samples that were infected with an inducible
HRAS construct and then selected for with antibiotics yields a pop-
ulation of cells with varying amounts of HRAS expression that
influences the diversity of the final senescent population.

It is important to mention that due to the experimental condi-
tions, our cell yield in the various forms of senescence was differ-
ent, which affected the sensitivity with which we could detect
differential expression between the two clusters. Although this
did not compromise our ability to detect common signatures,
some of the genes that appear to be specific to one form of senes-
cence and not the others might be the result of false negatives due
to low cell numbers and statistical power.

For all forms of senescence, we have identified a subpopulation
of cells that shows higher levels of extracellular matrix remodel-
ing genes and genes that are regulated by TGF-beta such as colla-
gen genes. Meanwhile, the other subpopulation shows higher
levels of DNA damage, pro-inflammatory profiles, and HMGA1
expression, and a strong accumulation of ribosomal protein gene
transcripts. These molecular signatures are reminiscent of what is
seen in senescent cells inducing notch senescence in neighboring
cells10–12. Consistently with this model, we see that the subpopu-
lations we observe show similar gene expression patterns as
described in the study conducted by Teo et al11, where a primary
population of cells was driven into the senescent state through the
activation of the HRAS oncogene, and, in turn, induced neighbor-
ing cells into senescence through the notch signaling pathway
(juxtacrine-induced senescence), giving rise to the second cluster
of cells characterized by the activation of the TGF-beta signaling
pathway11. Our study extends this work by showing that these
subpopulations appear to be a universal feature of senescence
as they consistently appear in clonal cell lines and in all the main
forms of senescence. One possible explanation is that that ability
for OIS cells to induce secondary senescence though the notch sig-
naling pathway is also shared by RS and DDIS cells (Fig. 5A).

Another possible explanation of the formation of these subpo-
pulations is that senescent cells tend to express TGF-beta early on

Table 4. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for DNA damage-induced
senescence (DDIS).

GSEA/KEGG NES p value

viral_life_cycle 2 0

intrinsic_apoptotic_pathway 1.9 0

p53_signaling 1.9 0

DNA_damage_signaling 1.9 0

cellular_response_to_UV 1.8 0

intrinsic_apoptotic_by_DNA_damage_and_p53 1.8 0.006

intrinsic_apoptotic_pathway_by_p53 1.7 0.003

response_to_UV 1.6 0.009

chemokine_signaling 1.5 0.031

stat_cascade 1.5 0.011

SMAD_signaling 1.5 0.045

apoptotic_signaling_pathway 1.4 0

Up_primary_secondary_(KEGG) 1.3 0

TGF_beta_signaling_pathway_(KEGG) −1.5 0.004

positive_substrate_adhesion_cell_spreading −1.6 0.003

LABBE_WNT3A_TARGETS_UP −1.6 0

cell_matrix_adhesion −1.7 0

negative_regulation_of_cytokine −1.7 0.001

non_canonical_Wnt_signaling −1.7 0

positive_regulation_of_wound_healing −1.7 0

response_to_TGFbeta −1.7 0

cell_adhesion_molecules_(KEGG) −1.7 0.001

actin_filament_based_process −1.8 0

actin_filament_organization −1.8 0

cell_junction_assembly −1.8 0

cell_junction_organization −1.8 0

response_to_wounding −1.8 0

actomyosin_structure_organization −1.9 0

cell_substrate_adhesion −1.9 0

regulation_of_actin_cytoskeleton_(KEGG) −1.9 0

extracellular_structure_organization −2.1 0

Up_secondary_primary_(KEGG) −2.1 0

GSEA results for cluster 1 versus cluster 2 for DDIS samples are shown. Positive
normalized enrichment scores (NESs) are pathways/gene sets enriched in
cluster 1, and negative NES are enriched in cluster 2.
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in their senescent lifespan, while expressing higher levels of
inflammatory and interferon response genes later in their life-
span10. Our analysis could be capturing a transition from a
senescence phase dominated by TGF-beta signaling to a phase

displaying a more pro-inflammatory profile. If this is the case,
then HMGA1 offers an interesting candidate whose role in this
transition could be further investigated. Asmentioned previously,
HMGA1 has been shown to be downregulated in secondary

(A)

(B) (C) (D)

(E)

(H)

(F) (G)

Figure 4. (A) Schematic showing experimental design for the Navitoclax experiments conducted on OIS and DDIS cells. (B–D) UMAP plots, cluster trees,
and violin plots of primary and secondary senescence for DDIS cells treated with Navitoclax. (E–G) UMAP plots, cluster trees, and violin plots of primary
and secondary senescence for OIS cells treated with Navitoclax. (H) Bar plots showing that Navitoclax preferentially induces apoptosis in cluster 2 cells
for OIS and DDIS cells (ns: p> 0.05; *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001).
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senescent cells induced through a notch signaling pathway when
compared with their primary OIS counterparts. An important dif-
ference between OIS and NIS is the expression of HMGA112,37,38.
HMGA1 is a highly abundant chromatin-associated protein that is
an essential component of the senescent chromatin architecture
and is critical for the onset of the senescence program in OIS.
OIS typically upregulates HMGA1, and this creates dramatically
different chromatin structures compared to NIS cells12. Even
though HMGA1 is a very important protein for the execution of
the senescence program and the organization of the senescent
chromatin, HMGA1’s role in senescence and its opposition of
anti-inflammatory and TGF-beta-dominated SASP profiles has
almost entirety been explored in the context of OIS and NIS.
NIS is also characterized by high levels of TGF-beta signaling,
which is consistent with a model where HMGA1 is anticorrelated
with the expression of TGF-beta pathways10–12,37. Another inter-
esting possibility is that the heterogeneity we are seeing is a result
of differences in levels of DNA damage. We noticed that cells in
cluster 1 are enriched in pathways relating to the DNA-damage
response. Therefore, higher levels of DNA damage could predis-
pose a cell to displaying the molecular signatures that we see
in cluster 1 such as increased SASP, lower TGF-beta signaling,

and higher levels of HMGA1. Our study sets the stage for impor-
tant questions. For instance, how does HMGA1 interact with
DNA-damage response pathways and TGF-beta signaling path-
ways in CS?

We also see that these subpopulations are translationally impor-
tant by showing that treatment with the commonly used senolytic
agent, Navitoclax, preferentially kills cells in cluster 2. A possible
explanation for this is that the higher levels of TGF-beta signaling,
which is a known affecter of the apoptotic pathways39, sensitizes
cells to the apoptotic effects of Navitoclax35. Another explanation
is that cells in cluster 1 are at a later stage of senescence, and there-
fore are more resistant to apoptosis and senolytic drugs. It is also
possible that cells in cluster 1 are indeed primary senescent cells,
and Navitoclax resistance is an inherent property of primary sen-
escence. In any of these cases, this study points to the translational
importance of senescent cell heterogeneity.
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