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Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide,
with a particular risk for severe disease and mortality in the elderly population. The more aged you are the
higher the risk for mortality and severity due to COVID-19. Why age is the single largest risk factor for
severity in COVID-19 is not known. Together virus-induced cell senesence and aging are believed to play
a central role inCOVID-19 severity andpathogenesis. A deeperunderstandingofCOVID-19pathophysiology
and the involvement of senescence/aging proteins is therefore required. This can help identify patients, at
an earlier stage, who aremore susceptible to acquiring a severe COVID-19 infection and those who aremost
likely to go on to develop post-COVID-19 syndrome. This early detection remains amajor challengehowever
largely due to limited understanding of SARS-CoV-2 pathogenesis.
In this study,we investigatewhether the levels of senescence-specificplasmaproteins fromCOVID-19patients
can be utilized to predict severity and post-COVID-19 syndrome.We performed proteomic profiling of plasma
from COVID-19 patients (n= 400) using the Olink Explore 384 Inflammation Panel. Data analysis identified
differences in plasma concentrations of proteins, which are linked to senescence while considering patient
hospitalization status, age, and their World Health Organization (WHO) clinical progression score.
The statistically significant changes were found in the senescence-associated plasma proteome of COVID-
19 patients who were hospitalized, more aged, and those with severe WHO classification (TPPI, CXCL10,
HGF, VEGFA, SIRPB1, IL-6, TNFRSF11B, and B4GALT1; p< 0.05) and which may be linked to post-COVID-
19 syndrome. Epigenetic analysis of the methylome, using the GrimAge Clock, found that biological and
chronological age did not correlate in hospitalized patients. We also identified that PTX3, CXCL10, KYNU,
and SIRPB1 genes had increased promoter methylation in hospitalized patients.
Machine learninganalysis showedthat characteristicproteinchanges performwitha similar accuracy to that
of a whole panel biomarker signature in terms of hospitalization, age, and WHO clinical progression score.
This study revealed senescence specific protein changes (sendotypes) in the plasma of COVID-19 patients,
which can be used as determinants for predicting COVID-19 severity, viral signature persistence, and ulti-
matelywhichmay lead to post-COVID-19 syndrome.Wepropose that the identification of such sendotypes
could be exploited for therapeutic intervention via senolytics in COVID-19.

Introduction

The impact of the coronavirus disease 2019 (COVID-19) global
pandemic has been felt worldwide, with substantial morbidity

and mortality evident in many countries1–4. As of 28 June
2023, there had been 767,518,723 people infected with the
disease and 6,947,192 deaths globally5. COVID-19 disease,
caused by severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2), varies considerably, ranging from an asympto-
matic to symptomatic carrier state1,6–9, withmortality from infec-
tion more prevalent in the elderly population10,11. Indeed, some
patients infected with COVID-19 develop mild illness/symptoms
and have a good overall prognosis7,8. Conversely, however, some
patients develop severe illness/symptoms that may result in the
patient requiring hospitalization, oxygen therapy, ventilation,
and/or intensive care unit (ICU) admission and even lead to organ
dysfunction and death1,6–9.

Infectionwith SARS-CoV-2 is driven by a pathological inflamma-
tory response, which results in a dysregulated immune response.
This involves both hyperimmune and hypoimmune responses12–14.
Even though age is a major risk factor4,6,15–17, we believe that the
phenomenon of virally induced senescence18–20 in conjunction
with aging and pre-existing senescent cells, plays a central causa-
tive role in COVID-19 severity and pathogenesis. This may be
linked to the escalating immune activation and the massive cyto-
kine storm seen following the COVID-19 infection, which appears
to drive severe infection1,12,13,21–24. SARS-CoV-2 induces a form of
cellular senescence, a stress-inducible cellular state switch that
includes terminal cell-cycle arrest, known as virus-induced senes-
cence (VIS), through numerous mechanisms18–20.

Studies are mounting to suggest that this VIS does have
immense relevance as a cellular response to SARS-CoV-2 infec-
tion. It is reported that this VIS results in the exacerbation of
the senescence-associated secretory phenotype (SASP) and is
characterized by the secretion of a plethora of pro-inflammatory
cytokines and chemokines, including extracellular matrix-modi-
fying, complement-activating, and procoagulatory factors by sen-
escent cells18,23,25–27. Asmentioned, senescence has an important
role in various process, including aging and chronic disease,
which are linked with elevated levels of cellular senescence, thus
resulting in the accumulation of aging-associated and chronic dis-
ease-associated senescent cells28–31. Therefore, in the context of
SARS-CoV-2 infection in elderly patients, who already have a
larger number of pre-existing senescent cells in their tissues
due to the aging process, these effects of the SASP factors
are much more intensified. These SASP factors influence the
“cytokine storm,” tissue-destructive immune cell infiltration,

endothelialitis (endotheliitis), fibrosis, and micro-thrombosis,
all VIS-driven features17–20.

A deeper understanding of COVID-19 pathophysiology and the
involvement of SASP is therefore required as a foundation to help
identify patients, at an early stage, who are more susceptible to
acquiring a more clinically severe COVID-19 infection.

To date, several studies have investigated the pathways, asso-
ciated genes, and proteins that are implicated in the pathophysi-
ology of severe COVID-19 disease, with some studies adapting
multi-omic approaches32–34. At present, to our knowledge, there
are no senescence-aging-related biomarker signatures that have
been identified by extensive proteomics to risk stratify COVID-
19 severity. Biomarker signatures previously defined as “sendo-
types,” which are defined as specific senescent endotypes, are
capable of differentiating disease characteristics25 and, for exam-
ple, may have potential in identifying those patients who are at an
increased risk of experiencing severe disease. Early stratification
of patients via such novel biomarker signatures may improve
clinical outcomes by streamlining the provision of effective clini-
cal care and would help to alleviate the overall burden of COVID-
19 on healthcare systems. This remains a major challenge,
however, largely due to a limited understanding of SARS-CoV-2
pathogenesis. Further targeted research is therefore needed to
explore, identify, and validate novel sendotypes which have
robust clinical utility in identifying the risk of severe infection
versus non-severe infection. Moreover, additional studies are
warranted to fully explore and elucidate the disease mechanisms
of the biological factors which are potentially driving senescence,
particularly in the elderly in the context of COVID-19 infection
and in patients who have post-COVID-19 syndrome.

Wedesigned a study that adopted a novel approach to investigat-
ing senescence in COVID-19 patients, utilizing the plasma proteo-
mic profiling approach in combination with lung cell senescence
models (Fig. 1)35. Other studies have performed high-throughput
proteomic profiling of COVID-19patients36–41. However, this is the
first study to our knowledge to take this unique approach to thor-
oughly investigate the relationship between SARS-CoV-2 infection,
senescence, aging, and post-COVID-19 syndrome. In addition, in
order to gain potential mechanistic insight, we embarked on

Figure 1. Study design overview. Schematic overview of the study design for this study.
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investigating the role of epigenetic alterations, a hallmark of aging,
in the context of COVID-19 disease. In recent years, “epigenetic
clocks” have been employed in computational modeling. These
epigenetic clocks are multivariate models identified by machine
learning that have the ability to predict age using DNAmethylation
data and thus can reflect biological aging42–45. In this study,
we performed further investigations based onmethylation analysis
using the GrimAge Clock, which outperforms all other DNA
methylation-based biomarkers and is associated with a host of
age-related conditions, lifestyle factors, and clinical biomarkers46.
This is the first study to our knowledge that has analyzed
the methylation profile of COVID-19 patients at such a large scale
(n= 450) and linked this to senescence.

From this analysis, we identified predictive sendotype-specific
protein changes in the plasma of COVID-19 patients, which are
associated with hospitalization status, age, and severity. To gain
further insights into the underlying disease mechanisms, we
mapped these signatures to specific pathways and associated
methylation changes in the context of the relevant sendotypes.
We also investigated whether there was a potential link between
epigenetics, senescence, and methylation that is associated with
COVID-19. Finally, our machine learning analysis suggests that
these signatures could be used as determinants for predicting
COVID-19 severity and could be exploited for therapeutic inter-
vention via senolytics or epigenetic drugs in COVID-19.

Methods
Patient cohort and clinical data collection

Patients (n= 519) were enrolled on the COVID Response Study
(COVRES): A Northern Ireland population study of SARS-CoV-2
prevalence, predisposing factors, and pathology (approved by
the Health and Care Research Wales Ethics Service; REC ref 20/
WA/0179). All patients provided written informed consent for
their samples to be used indownstreamanalyses. Theuse of patient
material and information, as well as research protocols, were
approved by ORECNI (Project Reference Number: IRAS 283596).
The patient data and corresponding clinical data was collected and
anonymized for all patients recruited as part of COVRES47. Clinical
Trial: Trial Registration—The trial has been registered as an obser-
vational study on clinicaltrials.gov as NCT05548829.

Olink plasma proteomics assay
For this study, a randomly selected cohort of samples (n= 400)

from the COVRES study was used for proteomics analysis. The
demographics for the patients/samples utilized in this specific
proteomics study are presented in Table 1. Blood samples were
collected in 3 × 10 ml ethylenediamine tetraacetic acid (EDTA)
tubes and immediately centrifuged at 4000 rpm (4°C) for
15min. The plasma layer was removed and aliquoted in cryovials
and stored at −80°C.

For this study, EDTA plasma samples were thawed at room tem-
perature (20°C) and 45 μl of each sample (n= 400 [non-hospital-
ized n= 186; hospitalized n= 214]) were (at random) pipetted
into 96-well plates with 8 × wells left empty on each plate for
internal controls to be added at Olink. Once plated, the plasma
samples were virus inactivated as per Olink’s COVID-19 1%
TritonX-100 inactivation protocol. All plates were sealed using
adhesive seals. As per the COVID-19 inactivation protocol, the
plates were vortexed thoroughly before centrifugation at 400 g
(20°C) for 1 min followed by a 2 hour incubation at room temper-
ature (20°C). Following this incubation, the plates were stored at

−80°C until shipment. The plates with samples loaded were
shipped to Olink (Olink, Uppsala, Sweden) on dry ice for proteo-
mic analysis. Internal controls were added to each plate and pro-
tein analysis of the 400 plasma samples (using 1 μl of plasma from
each patient sample) was performed using the Explore® 384
Inflammation panel (protein proximity extension assay) accord-
ing to proprietary protocols. Within this 384-plex panel, overlap-
ping assays of IL-6, IL-8 (CXCL8), and tumor necrosis factor (TNF)
are included for quality control (QC) purposes. All data is pre-
sented as NPX (normalized protein expression) values, Olink
Proteomics’ arbitrary unit on a log2-scale, relative protein quan-
tification calculated via normalization to the extension control
(known standard), log2-transformation, and level adjustment
using the plate control (plasma sample).

Selection of senescence-specific proteins from
Olink panel

A group of 68 proteins (Supplementary Appendix 1) from
the 368 proteins measured using the Olink assay were selected
for senescence-specific analysis. The 68 candidate proteins
selected were those that had significant expression levels (RNA-
sequencing data; p< 0.05, confidence interval [CI] 95%) mea-
sured from the human cells (IMR90; lung fibroblasts) induced
to develop oncogene-induced senescence using a retrovirus
expressing G12V oncogenic mutation or replicative senescence
in a previous study35. Gene names, p values, and log2fc can be
found in Supplementary Appendix 1 (Tables 1 and 2).

Methylation assay
Patient saliva samples (n=450) from the COVRES study were

used for downstream methylome analysis. The demographics
for the patients/samples utilized in the methylome study are pre-
sented in Supplementary Table S1. As previously described47,
saliva samples were collected using 1x DNA Genotek Oragene
DNA (OG-500) collection tubes. Saliva (2ml)wasmixedwith pro-
prietary stabilization buffer (2 ml) immediately upon collection
and stored at room temperature. To extract DNA, samples were
incubated for 2 hours at 56°C, followed by DNA isolation using
PrepIT.L2P as per the manufacturer’s instructions and eluted in
100 μl elution buffer. The quantity and purity of the extracted
DNA were evaluated using the Qubit® 3.0 fluorometer.

Table 1. Summary of patient characteristics for proteomic analysis.

Characteristics
Hospitalized

n= 214
Non-hospitalized

n= 186 p Value

Age Mean
(SD)

57.3 (13.1) 45.0 (14.5) <0.001

Severity Severe 214 (100.0) 12 (6.5) <0.001

Mild 174 (93.5)

Gender Female 90 (42.1) 109 (58.6) 0.004

Male 120 (56.1) 75 (40.3)

Other 4 (1.9) 2 (1.1)

The patient characteristics of the patients (n= 400) included in this proteomics
study. Demographics described include hospitalization status, age, World
Health Organization (WHO) coronavirus disease 2019 (COVID-19)
classification (patients were classified according to the WHO clinical
progression score established by the WHO Working Team 2020), and time
since polymerase chain reaction (PCR) positive result. Patients with a WHO
classification score of 1–3 were denoted as mild and those with a score of
4–9 denoted as severe.
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The samples were stored for downstream analysis at −20°C. As
previously described48, the Illumina Infinium MethylationEPIC
(EPIC) array was used for the methylation analysis of the DNA
samples collected from saliva (n= 450). In brief, 500 ng of
DNA underwent sodium bisulfite conversion to convert unmethy-
lated cytosines to uracil. The DNAwas denatured and neutralized
followed by isothermal whole genome amplification overnight.
Following amplification, DNA was fragmented using enzymes
and precipitated with isopropanol. It was then resuspended
before being hybridized to the EPIC BeadChip arrays. Chips were
washed before single base extension and labeling of the oligos.
Imaging was performed on the iScan System. A single Rscript
analysis pipeline utilizing the approach by ref.49 with modifica-
tion was used to initially process array image data files (.IDAT)
to aid sample and process quality control.

Statistical analysis
For the differential analysis, the Welch’s two-tailed t-test has

been applied to each assay individually with fold change, p value,
degrees of freedom, and t-stat recorded. The adjusted p value was
generated using Benjamini and Hochberg post hoc adjustment.
For the heatmap generation, significantly differentiated proteins
found above were selected. Heatmaps are generated using nor-
malized datawith the raw log2/NPX values. Patients are clustered
according to their proteomic values and are labeled according to
their demographics. Columns were labeled using relevant patient
data. For volcano plots, the −Log10 of the adjusted p value is
plotted against the Log2FoldChange (centered at 0). Points are
colored based on two criteria; points with a p.adjust value
< 0.05 and a log2FoldChange value> 0.1 are colored red
(upregulated) and points with a p.adjust value< 0.05 and a
log2FoldChange value< −0.1 are colored blue (downregulated),
all other points are colored gray. The principal component analy-
sis (PCA) is plotted using all the combinations of the top five prin-
cipal components. For each of these plots, the points represent
the two-dimensional location of a multidimensional sample with
the percentage of variance captured by each component displayed
in the x/y labels. Each point is then colored based on patient data
(each plot is plotted several times using different coloring). The
boxplots with violin follow the methods found on ggplot2-based
plots with statistical details at ggstatsplot (indrajeetpatil.github.
io) via the function ggbetweenstats() function. All analyses were
performed via R version 4.1.2 (2021-11-01). Detailed statistics, p-
values, degrees of freedom, means, and log2fc of each identified
protein in each group can be found in Supplementary Appendix
1 (Tables 3–8).

Enriched pathway analysis
Proteins with differences in their plasma concentrations had

their associated gene symbol, log2FC, and adjusted p-values taken
and ranwith pathfindR, an integrative omics package used to per-
form pathway analysis. pathfindR returned pathway enrichment
maps based on pre-existing differential expression/methylation
data from various omic studies and pathway/gene set annotations
from reputable sources such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG), Reactome, BioCarta, and Gene Ontology
(GO). The results displayed the top 10 most significant enriched
signaling pathways based on the lowest adjusted p-value. Terms
were labeled on the y axis, enrichment labeled on the x axis, and
the size of the data point is correlated with the number of genes
found in that specific network that are significant.

Machine learning
Machine learning analysis was undertaken using the KNIME

Analytics Platform50 running on a 64 core Windows 10 server.
Patient data were bootstrapped 1000 times to generate an ensem-
ble of data sets. On each dataset, the forward feature selection of
protein biomarkers was undertaken to identify a panel with a
maximum of five proteins and the panels were selected based
on their accuracy in fivefold stratified cross validation. Logistic
regression and random forest classifiers were developed with
the former running for 1000 epochs using a stochastic average
gradient solver and the latter running with between 50 and
500 decision trees optimized by hill climbing. In all cases, the
best-performing classifier was selected.

From the ensemble of receiver operator characteristic (ROC)
curves, linear interpolation was used to enable regular sampling
along the specificity axis. For each value of specificity, the corre-
sponding sensitivities were ranked with the 5%, 50%, and 95%
values taken as the lower CI, median and upper CI ROC curves
were generated for the median and CI.

Methylation analysis: RnBeads pipeline
Data import of n= 450 was performed with all samples

retained. Sample groups were divided into hospitalized versus
non-hospitalized. Quality control checks were performed (includ-
ing removal of single nucleotide polymorphisms (SNPs) and
“bad” probes, large probe drop out and retained 699,922 probes,
sex chromosome also removed). Preprocessing and bmiq normali-
zation performed. Covariate analysis was performed (sva module
= be, eight surrogate variables, and covariates controlled for:
sample sex). Inference module was also used (sample age,
LUMP immune cell compositions estimate, and sex prediction).
Exploratory analysis (PCA, methylation density plots) and differ-
ential methylation analysis were also performed. The DNA
methylation clock used in the analysis was the GrimAge
Clock.

Results
Characteristics of COVID-19 patients for proteomic
analysis

The characteristics of the participants (n = 400) in the current
proteomic analysis are shown in Table 1. Patients were grouped
according to various demographics including hospitalization,
(patients were classified as hospitalized if they attended/admit-
ted to the hospital within 14 days of positive polymerase chain
reaction (PCR) result), age, WHO clinical progression score
(WHO scores are based on the overall highest WHO score during
their infection regardless of hospitalization or not)51, and the time
since the patient’s PCR positive result.

The study cohort consisted of non-hospitalized (n= 186) and
hospitalized (n= 214) patients with the age breakdown as
≤50 y old (n= 183) or>50 y old (n= 217). The rationale for split-
ting for age group was based on the median of the entire COVRES
cohort which was 51 y old. In addition, according to Centre for
Disease Control and Prevention, older adults (especially those
aged 50 y and older) are more likely to get very sick from
COVID-19 than younger people. The WHO clinical progression
score was categorized into two categories: 1. Patients denoted
as mild (n= 174) had a WHO classification of 1–3 and 2.
Patients denoted as severe (n= 226) had a WHO classification
of 4–9. Finally, patients were also categorized according to the
length of time between positive PCR result and sample collection
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with patients divided into ≤8 weeks or >8 weeks since positive
PCR result (Table 2).

Significant differences in plasma concentrations of
senescence proteins in hospitalized, aged and severe
WHO-classified patients

High-throughput proteomic analysis was performed using the
Explore® 384 Inflammation panel with a total of 368 unique
proteins analyzed. As explained in the Methods section, the analy-
sis was specifically focused on proteins linked to senescence.
Transcripts which had significant expression levels in previous
RNA-sequencing data (p< 0.05, CI 95%) measured from cells
(IMR90; primary lung fibroblasts) induced to develop oncogene-
induced senescence or replicative senescence in a previous study35

were identified. These identified transcripts were then overlapped
with proteins measured using the Olink panel to identify proteins
linked to senescence based on the cell line senescence models. In
total, 68 proteins from the total of 368 proteins measured using
the Olink assay were selected for senescence-specific proteomic
analysis (Supplementary Appendix 1, Tables 1 and 2).

This approach was adapted for investigating the regulation of
senescence-associated proteins in COVID-19 patients based on
the hospitalization status, the WHO clinical progression score,
and age. First, the analysis by hospitalization status revealed a
substantial number of significant differences in plasma concentra-
tions of senescence proteins (n= 43) in hospitalized patients com-
paredwith non-hospitalized patients who had a sample collection
of≤8weeks since a positive PCR result, as illustrated in the cluster
analysis heatmap (Fig. 2A). Indeed, many of these senescence
proteins appeared to exhibit an increased levels; however, there
was also a few senescence proteins which appeared to have a
decreased levels in the hospitalized patients compared with the
non-hospitalized patients (Fig. 2B). The top 10 significant senes-
cence proteins (p< 0.01) identified includes TPP1, PTX3,
ITGA11, B4GALT1, CXCL10, HGF, VEGFA, PCDH1, SIRPB1,
and TIMP3 (top three proteins shown in Fig. 2C), all of which
have significantly increased levels in patients who were hospital-
ized, compared with non-hospitalized patients except ITGA11

which was downregulated in hospitalized patients (p< 0.05;
Supplementary Appendix 1, Tables 3–8).

Parallel analysis also revealed a similar number of significant
differences in plasma concentrations of senescence proteins
(n= 48) in patients who were categorized to have a severe WHO
clinical progression score compared to patients with a mild
WHO clinical progression score and who had sample collection
≤8 weeks since a positive PCR result, as illustrated in the cluster
analysis heatmap (Supplementary Fig. S1A). Similar to the regu-
lation pattern observed in the hospitalized patients, it was evident
that many of these senescence proteins appeared to exhibit
increased levels; however, there was a few senescence proteins
which appeared to have decreased levels in the severe WHO-
categorized patients compared with the mild WHO-categorized
patients (Supplementary Fig. S1B). The top 10 significant senes-
cence proteins (p< 0.01) includes PTX3, TPP1, B4GALT1, ITGA11,
HGF, CXCL10, SIRPB1, VEGFA, KYNU, and PCDH1 (top eight
proteins shown in Supplementary Fig. S1C), all of which have
increased levels in severe WHO-classified patients with the
exception of ITGA11 which was downregulated in severe
WHO-classified patients. This again adds confidence to the
analysis to see the strong overlap between the top 10 senescence
proteins and associated regulation levels (upregulated/downre-
gulated) for both hospitalized and severe WHO clinical progres-
sion score.

The samples were then evaluated for differences in senescence-
specific protein levels for patients who had sample collection
>8 weeks since a positive PCR result. Analysis revealed several
significant differences in plasma concentrations of senescence
proteins (n= 47) in hospitalized patients comparedwith non-hos-
pitalized patients, as illustrated in the cluster analysis heatmap
(Fig. 2D). Indeed, most of these senescence proteins also
appeared to demonstrate increased levels; however, there were
a few senescence proteins which appeared to have decreased
levels in the hospitalized patients compared with the non-
hospitalized patients (Fig. 2E). The top 10 significant senescence
proteins (p< 0.01) identified includes HGF, BTN2A1, LTBR,
ANGPTL2, CXCL10, TPP1, CKAP4, TNFRSF11B, IL-6, and
B4GALT1 (top three proteins shown in Fig. 2F), all of which have
increased levels in patients whowere hospitalized comparedwith
non-hospitalized patients.

On the other hand, analysis for patients who were categorized
to have a severe WHO clinical progression score compared to
patients with a mild WHO clinical progression score and who
had sample collection >8 weeks since a positive PCR result, iden-
tified a slightly lower number of significant differences in plasma
concentrations of senescence proteins (n= 30) in patients, as
illustrated in the cluster analysis heatmap (Supplementary
Fig. S1D). In line with the regulation pattern observed in hospi-
talized patients, it was evident that most of these senescence
proteins appeared to exhibit increased levels; however there
was also some, although few, senescence proteins which
appeared to have decreased levels in the severeWHO-categorized
patients compared with the mild WHO-categorized patients
(Supplementary Fig. S1E). The top 10 significant proteins
(p< 0.01) identified includes HGF, ANGPTL2, LTBR, BTN2A1,
CXCL10, TPP1, B4GALT1, IL-6, TNFRSF11B, and KYNU (top eight
proteins shown in Supplementary Fig. S1F), all of which have
increased levels in patients who had a severe WHO clinical pro-
gression score compared to patientswith amildWHO clinical pro-
gression score. Interestingly again, nine of these top proteins
evident in the severe WHO-classified patients also are the same

Table 2. Summary of patient characteristics into ≤8 weeks or
>8 weeks since positive PCR result.

Characteristics

≤8 Weeks
PCR

n= 121

>8 Weeks
PCR

n= 279
p

Value

Age Mean (SD) 51.2 (15.2) 51.7 (15.1) 0.749

Hospitalization Hospitalized 64 (52.9) 150 (53.8) 0.959

Non-
hospitalized

57 (47.1) 129 (46.2)

Severity Mild 1–3 55 (45.5) 119 (42.7) 0.682

Severe 4–9 66 (54.5) 160 (57.3)

Gender Female 62 (51.2) 137 (49.1) 0.262

Male 59 (48.8) 136 (48.7)

Other 6 (2.2)

The patient characteristics of the patients (n= 400) included in this proteomics
study. Demographics described include hospitalization status, age, WHO
COVID-19 classification (patients were classified according to the WHO
clinical progression score established by the WHO Working Team 2020), and
time since PCR positive result. Patients with a WHO classification score of
1–3 were denoted as mild and those with a score of 4–9 denoted as severe.
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(A)

(B)

(D) (F)

(E)

(C)

Figure 2. Senescence proteins with significant differences in their plasma concentrations in hospitalized patients. (A)Heatmap and (B) volcano
plot showing all differentially regulated senescence-specific proteins in hospitalized versus non-hospitalized patients ≤8 weeks since their positive

(legend continued on next page)
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top proteins evident in the hospitalized patients thus highlighting
the robustness of the statistical analysis performed.

As senescence is closely linked with aging, we investigated the
impact of age on senescence proteins in COVID-19-infected
patients. As hypothesized, the data revealed that the age of patients
had a significant impact on the regulation levels of several senes-
cence proteins. This analysis revealed a substantial number of sig-
nificant differences in plasma concentrations of senescence
proteins (n= 31) in aged patients, >50 y old compared with
patients ≤50 y old, who had sample collection ≤8 weeks since a
positive PCR result, this is illustrated in the cluster analysis heat-
map (Fig. 3A). Indeed, as observed previously for hospitalization
status and theWHO clinical progression score, several of these sen-
escence proteins appeared to exhibit increased levels with only a
few senescence proteins appearing to have decreased levels in aged
patients, >50 y old compared with patients ≤50 y old, (Fig. 3B).
The top 10 significant proteins (p< 0.01) identified includes
WNT9A, PTX3, CXCL10, HGF, PCDH1, IFNGR1, TNFRSF11B,
JUN, ITGA11, and B4GALT1 (top three proteins shown in
Fig. 3C), all of which have increased levels in patients who were
>50 y comparedwith patients≤50 y old apart from ITGA11which
was downregulated in more aged patients. Of note, ITGA11 is also
downregulated in both hospitalized and severe WHO-classified
patients who had sample collection ≤8 weeks since a positive
PCR result.

Likewise, a comparable observation was apparent when look-
ing at aged patients, >50 y old compared with patients ≤50 y
old, who had sample collection >8 weeks since a positive PCR
result. This analysis revealed a substantial number of significant
differences in plasma concentrations of senescence proteins (n=
33) in aged patients, >50 y old compared with patients≤50 y old,
who had sample collection >8 weeks since a positive PCR result,
this is illustrated in the cluster analysis heatmap (Fig. 3D).
As observed in the previous analyses, most of these senescence
proteins appear to exhibit increased levels with very few senes-
cence proteins having decreased levels in aged patients, >50 y
old compared with patients ≤50 y old (Fig. 3E). The top 10
significant proteins (p< 0.01) identified includes WNT9A,
TNFRSF11B, PCDH1, HGF, LTBR, BTN2A1, IL32, CXCL10,
SIRPB1, and CKAP4 (top three proteins shown in Fig. 3F),
all of which have increased levels in patients who were >50 y
compared with patients ≤50 y old.

PCAwasperformed to identify strongpatterns or trends linked to
senescence protein regulation and the respective hospitalization,
age, and WHO clinical progression scores within COVID-19
patients either ≤8 weeks or >8 weeks since positive PCR result.
This analysis permitted the visualization of the large data set in
which the data segregated into two groups for each of the variables
and excitingly which is associated and driven by senescence
protein regulation. This is illustrated in the PCA plots for hospital-
ized/non-hospitalized patients ≤8 weeks (Supplementary Fig.
S2A) or >8 weeks (Supplementary Fig. S2B) since positive PCR
result, for patients with a mild/severe WHO clinical progression
score ≤8 weeks (Supplementary Fig. S2C) or >8 weeks (Supple-
mentary Fig. S2D) since positive PCR result, and also for patients
according to their age (≤50 y old or >50 y old) ≤8 weeks

(Supplementary Fig. S2E) or >8 weeks (Supplementary Fig.
S2F) since positive PCR result.

Pathway and network analysis of senescence
proteins with significant differences in their plasma
concentrations in hospitalized, aged and severe
WHO-classified patients

Further investigation into the implication of senescence protein
regulation in hospitalized, aged, and severe WHO-classified
patients was performed via pathway and network analysis to iden-
tify the most commonly implicated pathways and interactions.

This analysis was performed using all senescence proteins with
significant differences in their plasma concentrations within hos-
pitalized patients ≤8 weeks (Fig. 4A) or >8 weeks (Fig. 4B) since
positive PCR result, for patients with a mild/severe WHO clinical
progression score ≤8 weeks (Supplementary Fig. S3A) or
>8 weeks (Supplementary Fig. S3B) since positive PCR result,
and also for patients according to their age (≤50 y old or >50 y
old) ≤8 weeks (Fig. 4C) or >8 weeks (Fig. 4D) since positive
PCR result. The observation of the pathway enrichment analysis
revealed various molecular interactions mapped to several
aspects including cytokine–cytokine receptor interactions,
MAPK signaling pathways, JAK–STAT signaling pathways, and
cell differentiation.

Persistent signatures of COVID-19
As a major focus of this study was linked to senescence, we

therefore also wanted to identify a senescence-specific signature,
otherwise known as a sendotype, which could also be considered
as a persistent signature of COVID-19 syndrome. In order to assess
the potential and associated performance with utilizing a smaller
senescence-specific biomarker signature panel versus a full Olink
panel biomarker signature (separate manuscript in preparation),
machine learning was employed, and ROC curves were generated
with area under the curve (AUC) values. Forward feature selec-
tion of protein biomarkers (senescence and whole panel) was
undertaken to a identify panels with a maximum of five proteins.
From this analysis, it was identified that a biomarker signature
comprising senescence only proteins was able to perform with
a similar accuracy to that of a whole panel biomarker signature
in terms of hospitalization (AUC 0.85 vs. 0.92 ≤8 weeks, 0.70
vs. 0.78 >8 weeks), age (AUC 0.90 vs. 0.93 ≤8 weeks, 0.85 vs.
0.90 >8 weeks), and WHO clinical progression score (AUC 0.87
vs. 0.93 ≤8 weeks, 0.70 vs. 0.79 >8 weeks) (Fig. 5A–D and
Supplementary Fig. S4A,B).

Methylation-associated analysis
As mentioned, methylation and epigenetic changes are impli-

cated in senescence. As part of this study, saliva samples
(n= 450) from the COVRES study were used for downstream
methylome analysis which was performed using the Illumina
Infinium MethylationEPIC (EPIC) array. The demographics for
the patients/samples utilized in the methylome study are pre-
sented in Supplementary Table S1. Chronological age was cor-
related with biological age using the GrimAge clock. Data were

polymerase chain reaction (PCR) test. (C) Boxplots for the top three differentially regulated senescence-specific proteins in hospitalized versus non-hos-
pitalized patients ≤8 weeks since their positive PCR test. (D) Heatmap and (E) volcano plot showing all differentially regulated senescence-specific
proteins in hospitalized versus non-hospitalized patients >8 weeks since their positive PCR test. (F) Boxplots for the top three differentially regulated
senescence-specific proteins in hospitalized versus non-hospitalized patients >8 weeks since their positive PCR test.
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Figure 3. Senescence proteins with significant differences in their plasma concentrations in aged patients. (A) Heatmap and (B) volcano plot
showing all differentially regulated senescence-specific proteins in ≤50 y versus >50 y old patients ≤8 weeks since their positive PCR test.

(legend continued on next page)
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normalized, as shown in the QQ plot (Supplementary Fig. S5A).
From this analysis, it was evident that hospitalized patients have a
higher epigenetic age than chronological age (Pearson's correla-
tion coefficient = 0.9525337) with the r scale correlation values
indicating a very good correlation between chronological and epi-
genetic age. They also appear to be aging at a faster rate (Fig. 5E,
red vs. blue line at left, p< 2.2e-16). Hospitalized patients have
accelerated biological aging as per the GrimAge clock with the
difference in age acceleration (AgeAcc) between the two groups
appearing as significant (p< 0.001) (Fig. 5E, right). Furthermore,
analysis also reveals that ≤50 y old cluster more tightly together,
while patients>50 y old have a greater variance (Supplementary
Fig. S5B) thus indicating that age has an important role.

In addition, we evaluated the methylation levels of senescence-
specific proteins that were profiled on the Olink proteomics
panel. Upon analysis, we identified a subset of genes (n= 27)
which had differences in their methylation levels at the promoter
region in hospitalized patients compared with non-hospitalized
patients (Supplementary Fig. S5C). Out of this subset, the genes
(n= 9) which had the largest changes in their methylation levels
in the promotor region of hospitalized patients compared with
non-hospitalized patients were PCDH1, TIMP3, LGMN, IL-32,
LTBR, PTX3, KYNU, CXCL10, and SIRPB1 (Fig. 5F). Moreover,
25.93% of significant senescence proteins overlap with FDR-sig-
nificant promoters between hospitalized and non-hospitalized
patients (Fig. 5G).

Finally, we also identified a subset of genes (n = 26)which had
differences in their methylation levels at the promoter region
in patients who had sample collection ≤8 weeks compared
with patients who had sample collection >8 weeks positive
PCR result (Supplementary Fig. S5D). Out of this subset, the
genes (n = 3) which had the largest changes in their methylation
levels in the promotor region of patients who had sample collec-
tion ≤8 weeks compared with patients who had sample collec-
tion >8 weeks positive PCR result were KYNU, LGMN, and
PCDH1 (Fig. 5H).

Discussion

In this study, we have measured and identified novel biomarker
signatures and specific sendotypes using plasma samples obtained
from COVID-19-infected patients. We have identified senescence-
associated proteomic changes in the plasma of hospitalized
patients, more aged, and those with severe WHO classification.
Machine learning showed sendotypes perform as accurately with
high sensitivity and specificity as compared to a larger proteomic
panel. Specifically, our study has identified several senescence-
associated proteins in both hospitalized and aged patients with a
predominant elevation in levels evident for most proteins.
Indeed, PTX3 and CXCL10 were identified to have elevated levels
in hospitalized and aged patients, this correlates with other find-
ings that have shown that an increased levels of PTX3 and
CXCL10 predict COVID-19 outcome and are strongly associated
with COVID severity and mortality34,52–55.

The role of the senescence-aging-COVID-19 axis and the
phenomena of immunosenescence, aging, and novel sendotypes
(senescent endotypes specifically) in COVID-19 infection and
post-COVID-19 syndrome has not been fully explored. SARS-
CoV-2 induces cellular senescence, specifically known as VIS,
through numerous mechanisms18,26,27. Studies are mounting to
suggest that this VIS does have immense relevance as a cellular
response to SARS-CoV-2 infection17–20. This VIS results in the exac-
erbation of SASP and is characterized by the secretion of a plethora
of pro-inflammatory cytokines and chemokines including extracel-
lular matrix-modifying, complement-activating, and pro-coagula-
tory factors by senescent cells25. As mentioned, senescence has
an important role in various processes including aging and chronic
diseasewhich are linkedwith elevated levels of cellular senescence
thus resulting in the accumulation of aging-associated and chronic
disease-associated senescent cells28–31.

Cellular senescence in general is known to be challenging within
the field because no single marker exists that defines senescence
and especially senescence specific to SARS-CoV-2 infection. In
addition to this, cryopreserved clinical samples from COVID-19-
infected patients need to undergo virus deactivation fixation steps
thus preventing their use for gold standard assays used for
detecting senescence such as SA-β-gal staining. Therefore, it
remains challenging to fully understand the role of senescence in
COVID-19. More recent studies are beginning to address this
challenge. A panel of senescence markers could robustly discrimi-
nate between nasopharyngeal mucosa samples obtained from
COVID-19-infected patients and prepandemic biopsy samples from
patientswithout a respiratory tract infection. A panel of senescence
markers, which includes p16INK4a, p21CIP1, H3K9me3, lipofus-
cin, and IL-8, had significantly higher reactivity in themucosa sam-
ples from the COVID-19-infected patients compared with the
prepandemic biopsy samples from patients without a respiratory
tract infection18,26,56,57. In addition, much stronger signs of senes-
cence were evident in the lung specimens of COVID-19-infected
patients compared to negative controls18.

Single cell and high-throughput transcriptomic analyses
further support the indication that VIS is indeed linked to the
severity of SARS-CoV-2 infection. It has been reported that the
patients infected with SARS-CoV-2 had elevated markers of sen-
escence, including elevated levels of transcription of p16INK4a,
present in cells of the upper and lower airway mucosa and also
had an increased levels of SASP factors, including IL-1α, IL-6,
CCL2, CXCL10,MMP9, PAI1, and TIMP1,within their serum com-
pared to healthy controls18,41,57–62. Furthermore, another study
reported that the removal of senescent cells fromCOVID-19 infec-
tion reduced the viral load in aged mice17 thus adding to
our hypothesis that age-associated pre-existing senescent cells
have a causative role and clear clinical relevance in determining
COVID-19 severity.

In order to gain a potential mechanistic insight, we embarked
on investigating the role of epigenetic alterations in COVID-19.
These epigenetic clocks aremultivariatemachine learningmodels
that can predict age using DNA methylation data and thus can
reflect biological aging42–46. In this study, we performed

(C) Boxplots for the top three differentially regulated senescence-specific proteins in ≤50 y versus >50 y old patients ≤8 weeks since their positive PCR
test. (D)Heatmap and (E) volcano plot showing all differentially regulated senescence-specific proteins in≤50 y versus>50 y old patients>8weeks since
their positive PCR test. (F) Box plots for the top three differentially regulated senescence-specific proteins in ≤50 y versus >50 years old patients >8
weeks since their positive PCR test.
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Figure 4. Pathway analysis of senescence proteins with significant differences in their plasma concentrations. Pathway analysis of all the sig-
nificantly differentially regulated senescence proteins in hospitalized patients (A) ≤8 weeks since their positive PCR test and (B) >8 weeks since their
positive PCR test. Pathway analysis of all the significantly differentially regulated senescence proteins in aged (>50 y old) patients (C) ≤8 weeks since
their positive PCR test and (D) >8 weeks since their positive PCR test.
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Figure 5. Persistent signatures and methylation-associated analysis. (A–D) Receiver operating characteristic (ROC) curve of levels of the whole
panel signature (n = 5 proteins) versus a senescence-specific signature (n= 5 proteins) based on their hospitalization status and age ≤8 weeks or

(legend continued on next page)
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methylation analysis using the GrimAge clock46. Studies to date
are very limited63–66 and this is the first study to our knowledge
that has analyzed the methylation profile and specifically linked
this to senescence of COVID-19 patients at such a large scale. We
found that hospitalized patients have a higher epigenetic age than
chronological age and appear to be aging at a faster rate. This may
explain the higher risk of severe disease in these older patients.
Interestingly, we found elevated protein levels of PTX3 and
CXCL10 were counterbalanced by hypermethylation of promotor
regions of both genes (Fig. 5F). We propose that the hypermethy-
lation evident is not enough to dampen the cytokine storm in hos-
pitalized and aged patients. Furthermore, we also identified genes
which exhibited differences in their methylation profiles and
maintained these for a longer-timeframe post-COVID-19 infec-
tion. These methylation changes may indeed be associated and
indicative of post-COVID-19 syndrome.

Taken together, the findings from these studies suggest that the
paradigmof senescence, an aging-related switch, underpins and is
a critical regulator of SARS-CoV-2-triggered senescence which
drives pathology in COVID-19. We believe that a predisposition
to this senescence-evoked immune cascade, which is linked
to aging, can be triggered by SARS-CoV-2 infection and lead to
severe disease. However, this area of research is very much in
infancy and substantial studies are needed to understand this
SARS-CoV-2-evoked COVID-19 pathobiology. The clinical prom-
ise of senolytics as a novel treatment against COVID-19 is a prom-
ising area and previous studies have demonstrated that treatment
with senolytics was able to eradicate VIS cells, alleviated COVID-
19 lung disease, and reduced inflammation in two COVID-19-
driven animal models18–20 and also reduced viral load in aged
hamsters17. This may allow new insights into the dynamics of
COVID-19 disease, and we propose that utilizing sendotypes
and the removal of such senescent cells or VIS cells could help pre-
vent or mitigate severe COVID-19 and poor clinical outcomes.

Limitations

Weacknowledge limitations in our study such as comorbidities,
bodymass index (BMI), age, gender, and antiviral use, whichmay
also serve as important confounder/effect modifiers. We also
acknowledge that the study design should compare concentra-
tions of circulating proteins between hospitalized and non-hospi-
talized older adults that are matched for at least chronological
age; however, this is not possible in this study design, as the sam-
ple size would become too small for machine learning to be
performed.
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