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The ready availability of large longitudinal datasets, such as the UK Biobank, enables analyses of complex
aging traits at previously unattainable levels. We analyze the aging signatures of DNA methylation and
longitudinal electronic medical records from the UK Biobank and demonstrate that their dynamics can
be recapitulated by rare and independent stochastic transitions among numerous metastable states, so
that the accumulated effect of aging changes can be captured by a single stochastic variable, termed
thermodynamic biological age (tBA), in agreement with other aging omics. In the proposed theoretical
model, tBA increases linearly with age, tracks the entropy produced (and hence information lost) during
the aging process, and causes an irreversible drift in physiological state variables, reduced resilience, and
an exponential acceleration of the incidence of chronic diseases andmortality risks. The entropic nature of
aging drift may constrain the possibility of complete age reversal and highlights important distinctions
between aging in humans andmice, thus necessitating a re-examination of strategies for engineering neg-
ligible human senescence.

Introduction

Aging is a complex process manifesting itself across different
organismal levels (see hallmarks of aging1) and leading to the
exponential acceleration of the incidence of chronic diseases2

and mortality3. It is both practically and intellectually appealing
to reduce the effects of the multitude of phenotypic changes to a
few, or, even better, a single actionable indicator, mostly referred
to as “biological age” (BA). BA models can be trained to predict
the chronological age or mortality risks of an individual from dif-
ferent sources of biomedical data, ranging from DNAmethylation
(DNAm)4–14 to physical activity records from wearable devi-
ces15,16. Excessive BA (or BA acceleration) is associated with
all-cause mortality as well as the prevalence, future incidence,
and severity of chronic10,17,18 and transient diseases, such as
COVID-1916,19–21. No wonder, BA predictors have increasingly
gained traction in clinical trials22–24.

The dynamic properties of BA and the exact relation between BA
variation and aging are not entirely understood. For example,
DNAm age may increase without an appreciable increase in all-
causemortality in negligible senescent species25,26. Moreover, even
in the most healthy individuals, BA levels can transiently change
throughout the day following circadian rhythms27 or in response
to stress factors and lifestyle choices such as smoking18,28. The char-
acteristic time required for anorganismstate to relax tohomeostatic
equilibrium and the range of BA fluctuations progressively increase
as a function of age18. The number of individuals exhibiting slow
recovery increases exponentially and doubles approximately every
8 y, which is close to the mortality doubling time in humans16.

Further applications of BA models in aging research and medicine
require a better understanding of the dynamics and causal relation
between, on the one hand, underlying biological and physiological
variations of the organism state captured by various BA indicators
and, on the other hand, mortality, prevalence and severity of dis-
eases, and the effects of medical interventions.

To address these fundamental questions,we reviewed the univer-
sal features of aging signatures in biomedical data. We performed a
principal component analysis (PCA) in a large cross-sectionalwhite-
blood-cell DNAm dataset29 and the longitudinal electronic medical
records (EMRs) from theUKBiobank30. In both cases, aging dynam-
ics can be recapitulated by rare and independent stochastic transi-
tions among numerous metastable states of the methylation of
individual CpG sites (5'-C-phosphate-G-3' sequence of nucleotides)
or the incidence of specific diseases during life. At the same time,
most of the variance in thedata couldbe explained bya single factor
linearly increasing with age and demonstrating the strongest corre-
lation with Horvath’s DNAm age or the number of chronic diseases
in the DNAm and EMR datasets, respectively.

To explain the dynamics behind the universally observed aging
signatures, we put forward a semiquantitative model of aging in a
complex regulatory network. We assumed that living systems are
collections of a vast number of interacting functional units (FUs)
that are initialized to a metastable state at the end of develop-
ment. Aging then results from relaxation of the organism state
toward equilibrium through a sequence of stochastic transitions,
representing microscopic state changes in all FUs.

Dynamically accessible states are countless, as well as the num-
ber of stochastic transitions among them. Hence, the accumulated
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effect of random transitions on individual biological processes
can be quantified by a stochastic variable with a linearly increas-
ing mean and variance. The quantity progressively increases over
time in a sufficiently large regulatory network and hence may
emerge as a natural aging clock—the thermodynamic BA (tBA).
We argue that tBA is thus the fundamental aging variable. It is best
associated with the dominant principal component (PC) score in
biomedical data and Horvath’s methylation clock. It is propor-
tional to configuration entropy and quantifies information lost
during aging.

Materials and Methods
PCA of the DNAm data

We took the white-blood-cell methylation data from the
GSE87571 dataset29. It contains 729 samples (more than 440k
features each), collected from patients of both genders (341
males and 388 females), covering the age range between 14
and 94 y.

To focus the analysis on aging, we filtered out patients younger
than 20 y old (620 samples remaining). We filtered out CpG sites
according to Pearson’s correlation between the DNAm levels and
the chronological age at the level of p <0.005=N (where N is the
total number of the reported features), thus obtaining 96,536
sites. We performed and reported the results of the PCA on the
resulting data.

We computed Horvarth’s methylation age4, a few CpG sites
(cg17099569, cg00431549, cg11025793, and cg14409958)were
not present in the data, and hence we had to exclude them from
the calculation.

DNAm-PC3 increased with age at a rate faster than linear. We
collected all the pairs of the DNAm-PC3 scores and the chrono-
logical age for every patient n in the dataset and used the available
age range to produce afit of the data to average fromEquation (8):

DNAm − PC3n ≈
a

tmax − tn
+ b · tn + c (1)

with the uniform Gaussian error and tmax, a, b, and c being the
parameters of fit. The calculation returned tmax =129.9 y.We also
performed the linear fit of the inverse variance of DNAm-PC3 and
obtained 90% CI ½114.5,122.2� for tmax.

Gene set enrichment analysis
We collected the CpG sites best associated with DNAm-PC1 and

DNAm-PC3 according to the values of the respective vector com-
ponents. We retrieved the gene IDs from Illumina’s 450kmethyla-
tion arrays documentation. Finally, we performed gene ontology
and disease ontology enrichment with the help of the R
“clusterProfiler4.0” package31.

Preprocessing of EMRs from the UK Biobank
To avoid using the disease labels corresponding to the transient

diseases, we selected 111 chronic diseases diagnoses using Chronic
Condition Indicators for ICD-1032. Overall, 389,494 patients are
included in the EMR dataset, mostly of Caucasian origin
(366,715 or 94%), of both sexes (179,032 males and 210,462
females) in the age range of 38–74y.

Entropy/entropy production rate determination
In the DNAm dataset, we computed the configuration entropy

as the mean Shannon entropy over all individual’s CpG sites
indexed by i in a sample (patient) indexed by n as follows:

Sn =− <σnilog2ðσniÞ + ð1 − σniÞlog2ð1 − σniÞ >i (2)

where σi is the probability of finding the CpG state i in the polar-
ized state and<…>i represents averaging over all CpG sites in an
individual. The dots in Figure 4 were obtained by averaging the
mean entropy values of all patients in the subsequent
5-y-old age bins.

In the EMR dataset, the probabilities shown in Equation (2)
corresponded to the incidence of the diseases in the subsequent
5-y-old age bins.

Theory: Aging in a complex regulatory network
We propose to model the effect of the interactions among FUs

with the help of the auxiliary variables—the effective “regulatory
fields” hi evolving over time according to

ḣi =
X

j

kijσj +
X

jk

gijkσjσk + Ji0 + f i (3)

where kij and gijk describe the first linear and first-order nonlinear
interaction between the individual units, respectively. The force
terms Ji0 and f i represent the effects of constant (such as smoking
or diets) and stochastic (social status and deleteriousness of the
environment33) factors, respectively. For simplicity, we assume
that the noise factors have zero mean and are not correlated over
time. The states of individual FUs i can be observed depending on
the regulatory field hi according to the Boltzmann distribution:
σ̄i = ð1 + exp ð−hi=TÞ−1, where T is the effective temperature.

We start from Equation (3) and observe that the regulatory
fields change over time in response to the deterministic (the direct
linear and the higher-order nonlinear interactions between units)
and stochastic forces f i. We naturally assume that the stochastic
force terms are not correlated over long time intervals:
<f ðtÞf ðt0Þ> =Bδðt − t0Þ, where B is the power of stochastic noise,
<…> represents the averaging along the individual trajectory
and over all specimen, and δðtÞ is the Dirac delta function.

In spite of apparent simplicity, Equation (3) is nonlinear and
may have highly nontrivial solutions leading to applications in
condensed matter physics34 and neurophysiology35. In our dis-
cussion, it is important that the stochastic noise drives the system
toward equilibrium at an effective temperature controlled by the
power of the noise T∼ B.

The data suggest that there is a large “bulk” of units character-
ized by excessive lifetimes. Mechanistically, this may be
explained by operatingwithin a vicinity of ametastable state with
a very high activation energy Uact relative to the effective temper-
ature, Uact ≪ T (Fig. 3A).

We will assume that the effects of aging are small on the scale
of Uact and hence the depolarization rates Ri ∼ Uact=T are not
only very small but also do not considerably depend on age.
Accordingly, the depolarization is on average a linear function
of age and the total number of configuration transitions
Zt: <Δσi>=Rit ∝ Zt and <Δσ2i > ∝ Rit ∝ Zt.

Let us think that the aging drift in the form of simultaneously
occurring configuration transitions progresses slowly compared
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with fast functional responses in the organism. We linearize
the equations for the regulatoryfields next to the youthful state h̄i:

˙δhi =
X

j

Kijδhj +
X

j

Kij<Δσj> +
X

j,k= j

gijk<Δσj2>

+
X

j,k

gijk
dσj
dhj

δhj<Δσk> + Ji0 + f i (4)

where δhi =hi − h̄i and Δσj describe the deviations of the fields
and depolarization of the units, respectively, whereas the aver-
ages <…> involve the averaging over the “bulk” uncorrelated
states only.

The solutions of the linearized Equation (4) can be best under-
stood with the help of a linear decomposition: δhi ≈

P
A zAbi

A,
where zA is the pathway activations and biA is the right eigenvec-
tors of the interaction matrix corresponding to the smallest
eigenvalues rA (the matrix K is nonsymmetric and hence its
complete eigensystem must include the left eigenvectors
aAK= − rAaA, and the right eigenvectors KbA = − rAbA). The
components of the vector biA characterize the participation of
the FU i in the pathway A.

Substituting the solution into the equation and multiplying
both sides by the corresponding left eigenvector, we find that

żA = − ðrA − r0AZtÞzA + βAZt + JA + fA (5)

where JA = aAJ and fA = aAf . The effect of aging comes through the
mean field on the pathway activation βAZt = aAK<Δσ> + OðgÞ
and the nonlinear correction to the eigenvalue rA ≈ rA − r0AZt.

It is important to understand that all the relevant vectors and
constants cannot be derived and could only be measured experi-
mentally. By virtue of the central limit theorem, the large number
of configuration transitions ensures that the effect of the mean
field is exactly linear in Zt.

Qualitatively, the net effect of the rare transitions and the asso-
ciated mean field Zt together produce a persistent pathway acti-
vation, on average, slowly increasing with age. This is often
referred to as an enslavement principle: stochastic depolarization
transitions produce a slowly evolving mean field Zt that disturbs
pathways characterized by fast relaxation times having thus
enough time to adjust to its current level.

Results
Aging signatures in cross-sectional DNAm data

We start by analyzing a dataset of DNAm in aging white blood
cells29. Each of the reported DNAm levels σ̄i is the average of a
binary single-cell signal over a bulk tissue sample comprising
many cells. In other words, σ̄i is the probability of finding a
CpG site in a methylated state.

To avoid complications due to the crossover between develop-
ment and aging, we only analyzed donors older than 25 y.
Furthermore, to counter the “curse of dimensionality”36 due to
the shallow nature of the dataset (450k CpGs measured in less
than 800 patients), we focused our analysis only on CpGs signifi-
cantly correlated with age (after the Bonferroni correction for
multiple testing, p=0.005=450k). Of approximately 100k CpGs
significantly correlated with age (almost 25% of all reported),

most were either initially hypermethylated (σ̄i > 0.9, 26%) or
hypomethylated (σ̄i < 0.1, 28%).

To normalize the distribution of the DNAm signal confined in
the interval ½0,1�, we converted DNAm levels to log odds ratios
hi ∼ lnðσ̄i=ð1 − σ̄iÞÞ. We refer to hi as “regulatory fields” by anal-
ogy with condensed matter physics (see the Materials and
Methods section).

The PCA of regulatory fields reveals a few PCs associated with
age (DNAm-PC1 and DNAm-PC3 explained 41.3% and 3.2% of
variance in the data but changed with age, respectively, and
DNAm-PC2 explained 3.8% of variance but did not change with
age and was omitted in the analysis of aging changes; see Figs. S1
and S2). The dominant PC (DNAm-PC1) evolves approximately
linearly as a function of age (Fig. 1A; Pearson’s r = 0.68,
p=3 · 10−98). The variance of DNAm-PC1 also increases linearly
with age (Fig. 1B), which is a feature of a stochastic process (ran-
dom walk).

Aside from DNAm-PC1, the best correlation with chronologi-
cal age was produced by the third PC, DNAm-PC3 (Pearson’s
r =0.56, p= 3 · 10−62). DNAm-PC3 increased faster in the sub-
sequent age-adjusted bins than at a linear pace as a function
of age (Fig. 1C). The variance of DNAm-PC3 also increased
faster than linearly, so that the inverse variance decreased
approximately linearly in the patients older than 40 y old
(Fig. 1D). By extrapolation, the inverse variance of DNAm-
PC3 would approach zero (and hence the variance would
diverge) at some age within the age range of 120–150 y. This
behavior hints at a nonlinear coupling of DNAm-PC3 to (and
hence the dependence on) DNAm-PC1.

The loading vectors corresponding to DNAm-PC1 and DNAm-
PC3 describe two distinct methylation profile changes with age.
The distribution of the PC1 loading vector’s components is non-
Gaussian and bimodal. Hence, the dominant aging signature in
DNAm data involves two large groups of CpG sites (Fig. 1E)
changing their methylation (“polarization”) with age in opposite
directions. Thefirst PC score is then proportional to the total num-
ber of polarization transitions.

In contrast, the distribution of the loading vector’s components
from DNAm-PC3 has a single peak and clear leading contributions
fromnon-Gaussian tails (Fig. 1E). Thegene set enrichment analysis
of methylation regions associated with the PC3 variation reveals
pathways involved in innate immunity and cancer (Fig. 1G,H).

The age-associated PC scores demonstrate the best correlation
with Horvarth’s DNAm age4 (Fig. 1F). The corresponding
Pearson’s correlation coefficients were r = 0.75 (p=2 · 10−131)
and r =0.52 (p= 10−52) for DNAm-PC1 and DNAm-PC3, respec-
tively (see also Figs. S1 and S2, for a summary of other PC scores’
correlation with age and Horvath’s DNAm age).

Next, we checked which characteristic features of dynamics
associated with aging in DNAm can be observed in other forms
of biomedical data. To confirm the stochastic character of the
dominant aging signature in humans, one would need to analyze
a large longitudinal dataset. We did not have access to a high-
quality set of longitudinal DNAm measurements. Instead, we
turned to an extensive EMRs collection from the UK Biobank.
Irrespective of the age at the first assessment, the EMRs provided
information on the prevalence of chronic diseases from inception
until the end of the follow-up (slightlymore than 10 y after enroll-
ment, on average).We represent each patient by a vector of binary
variables indicating the presence or absence of a disease (see the
Materials and Methods section).
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Most of UK Biobank’s subjects are healthy early in life. Hence,
the states representing the presence of diseases are initially polar-
ized (σi =0). Most chronic diseases are relatively infrequent: the
most prevalent diseases are metabolic disorders (with the preva-
lence of 15%), joint disorders (14%), and arthrosis (12%). Hence,
most of the states stay polarized for life, with only a small fraction
of patients exhibiting depolarization transitions leading to the
incidence of specific diseases.

The PCA of binary-valued vectors representing a health state
for the EMRs of UK Biobank’s subjects at the time of the first
assessment look like the PCA results from the white-blood-cell
DNAm study above. This time, we observed only two PCs signifi-
cantly associated with age (see the blue and green lines and the
respective ranges corresponding to the mean levels and one stan-
dard deviation in Fig. 2A).

The dominant aging signature, the first PC in the UK Biobank’s
EMR data (EMR-PC1), evolves approximately linearly as a func-
tion of age and is linearly associated with the total number of
diagnosed diseases (Fig. 2B). Hence, in line with the results of
our DNAm analysis above, the first PC correlates with the total
number of depolarization transitions (this time being equal to
the disease burden at the time of measurement).

As expected, the variance of EMR-PC1 increases linearly with
age (Fig. 2C), which is a feature of a stochastic process. This time,
however, due to the longitudinal nature of the EMR dataset, we
canmake a stronger claim by computing the autocorrelation func-
tion of EMR-PC1. We observe that the autocorrelator increases
linearly as a function of the time lag between the observations,
which is typical for a result of a stochastic process with a
drift (Fig. 2D).

Aging in a complex regulatory network
To explain the key features of dynamics of aging signatures, let

us consider an organism as a network of interacting FUs. Each of

the units can be observed in multiple states of varying physiologi-
cal capacity. We have already presented examples of such micro-
scopic states corresponding to the different methylation levels of
CpGs or disease states. However, the language may be used to
describe other situations involving, e.g., mutations or conforma-
tion changes in biomolecules.

For any given FU i, we will focus on the two most-occupied
microscopic states (Fig. 3A) corresponding to two adjacent poten-
tial wells in the free energy landscape shaped by regulatory inter-
actions. We encode the pair of states by a binary variable σi taking
values of σi =0 and σi = 1, respectively. At the end of develop-
ment, most FUs are polarized, so that most of the subjects occupy
one of the selected states.

According to the model, the initial states set during develop-
ment are metastable states. Hence, over time, the organism state
relaxes toward thermal equilibrium via a series of configuration
transitions between microscopic states driven by fluctuations.
Both the DNAm and EMR data suggest that, in most cases, the
transitions are infrequent. On average for each FU, we observe
fewer than a single transition between the states over the lifetime
t̄ of an organism. In other words, the corresponding transition
rates Ri are slow (Ri t̄ ≪ 1, see Fig. 3B). Slow transition rates
depend on the activation energies Uact

i. and the effective temper-
ature T exponentially, Ri ∼ expð−Ui

act=TÞ37. Therefore, we
expect that Ui

act≫T are barely affected by the effects of aging.
The effective temperature T characterizes the statistical proper-

ties of regulatory noise, whichmay depend on the fidelity of regu-
latory interactions and the deleteriousness of the environment33.
The effective temperature shall not be confused with (although
maybe related to) the body or environmental temperature (see
the Materials and Methods section).

Quantitatively, stochastic fluctuations leading to configuration
transitions change the average polarization of every FU linearly
over time t:

(A)

(E) (F) (G) (H)

(B) (C) (D)

Figure 1. PCA of age-dependent methylation profiles from white-blood-cell samples in GSE87571 dataset. (A) DNAm-PC1 and (B) variance of
DNAm-PC1 increase, on average, linearly as functions of age. (C) DNAm-PC3 increases faster than linearly with age. (D) Inverse variance of DNAm-PC3,
the extrapolation for the range of 40–75 y vanishes at approximately 120 y old. (E)Distribution of PC vector components. (F)DNAm-PC1 scores correlate
with Horvath’s DNAm age. The color bar represents patients’ chronological age. (G) Gene set enrichment analysis: CpG sites comprising DNAm-PC3 are
associated with the regulation of innate immune response. (H) Methylation profiles driven by DNAm-PC1 and DNAm-PC3 are associated with devel-
opmental and mental diseases and internal organs’ diseases.
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(A) (B)

(C) (D)

Figure 2. PCA of disease-state vectors from the electronic medical records (EMRs) from the UK Biobank. (A) Age dependence of the first three PC
scores. (B) PC1 correlates with the total number of chronic diseases. The solid lines and the ranges represent the means and the standard deviations in
subsequent age-matched cohorts. (C) Variance of PC1 increases linearly with age. (D) Autocorrelation function CðτÞ of PC1 increases linearly as a func-
tion of the time lag τ.

(A) (B) (C)

Figure 3. Basic features of the proposed aging model. (A) Schematic representation of relaxation dynamics of a functional unit (FU) i residing in a
potential well (the blue curve). The subsequent metastable states are labeled by the “polarization” σi =0 and σi = 1 (the red arrows indicate thermally
activated configuration transition between microscopic states). The initial “polarized” state is protected by the activation barrier characterized by the
activation energy Ui

act. The configuration transition rates Ri are presumed small and depend exponentially on the effective temperature T. (B) Human
organisms consist of a macroscopically large number N of FUs. We classify them according to the mean activation rates Ri. Most configuration transitions
are very rare (Rit ≪ 1). (C) Dynamics of the “soft” FUs with low activation barriers Rit∼ 1. Aging drift causes the reduced resilience and diverging
variance of physiological state fluctuations, all proportional to the overall number of the configuration transitions to date Zt ≈ NRt.
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<σi >t = <σi >t0 + ϵiRiðt − t0Þ (6)

Here, the averaging <…>t occurs over the samples produced at
age t and ϵi = ± 1 is the direction of a depolarization transition.

The PCA of a dataset modeled in Equation (6) would produce
the first PC, which is directly proportional to the total number
of configuration transitions Zt ≈ NRt, where R is the average
depolarization rate and N is the total number of FUs. Only a tiny
fraction of all FUs is practically observable in any given experi-
ment. However, wemay expect that the total number of the depo-
larization transitions in any sufficiently large subset of the data
(such as DNAm or EMRs) is proportional to Zt.

The depolarization rate for each FU may be slow, Ri t̄ ≪ 1.
However, the total number of FUs available for the configuration
transitions is practically infinite N≫1, and their compound effect
is not necessarily small. If an organism is sufficiently long lived,
the number of configuration transitions Zt is substantial, and the
aging signature described in Equation (6) would dominate the
variance in real-life biomedical data. This is consistent with our
observations in the PCA of the DNAm (Fig. 1A) and EMR data
(Fig. 2A) above. The distribution of the first PC vector’s compo-
nents would be bimodal for DNAm (bidirectional gain and loss of
methylation, Fig. 1E) and unimodal for EMRs (the number of
diagnoses would only grow with age).

Given that Zt is a cumulative number of random transitions, its
dynamics would obey a stochastic Langevin equation with a drift
(diffusion). Hence, the variance of Zt in age-adjusted bins should
increase linearly with age. This prediction is consistent with the
observed behavior of the first PC in the DNAm (Fig. 1B) and EMR
(Fig. 2C) data.

More evidence in favor of the stochastic character of Zt could be
produced by the investigation of the autocorrelation function
CðτÞ=<ðZt+τ − ZtÞ2>, where <…> represents the averaging,
first, along the individual trajectory and, then over all patients.
The autocorrelation function of the leading PC in the EMR data
increased linearly as a function of the time lag in the range
between 2 and 10 y (Fig. 2D). The diffusion coefficient’s esti-
mates from the variance and autocorrelation increase turned
out to be close: 0.012 and 0.009 per year, respectively, thus con-
firming the association of the leading PC scorewith the increasing
number of configuration transitions Zt.

Assuming that we start from highly polarized states,
<σi>t ≈ 1 − Rit, we show that the configuration entropy is equal
to the number of depolarization transitions Zt

SðtÞ=N<Ritlogð1=RitÞ>∼ Zt (7)

up to a proportionality coefficient, thus highlighting the stochas-
tic character of aging drift in the model. Hence, the model
explains the dominant aging DNAm changes (DNAm-PC1) and
the incidence of chronic diseases (EMR-PC1) as the growth of con-
figuration entropy. Notably, the entropy production rates turned
out to be very close: the regression line slopes were 0.0122
(p= 0.001) and 0.0375 (p=0.025) bits per FU per year in the
DNAm and the EMR datasets (Fig. 4A,B), respectively.

Due to the inverse exponential dependence between the tran-
sition rates and the activation barrier, the lowest activation bar-
riers would lead to the highest depolarization rates (the top FUs in
Fig. 3B). Below, we show that the interactions between such FUs
can no longer be neglected and thus the FUs should form coregu-
lated clusters (see the Materials and Methods section). We expect
that the joint activation of FUs forming a cluster (or a pathway)
labeled by A affects all other FUs i in the cluster via a shift of regu-
latory fields according to δhi ≈ zAbiA, where zA and biA are the
pathway activation strength and the participation vectors’ com-
ponents, respectively.

In Figure 3C, the solid blue line represents the cross-sectional
view of the free energy as a function of the pathway activation
variable zA experiencing stochastic fluctuations in response to
stress factors. The dynamics of the pathway activation depend
on the power of stochastic noise (proportional to the effective
temperature T) and persistent stress factors JA. The effects of
the regulatory interactions can be described by the recovery rate,
rA, which is directly related to the curvature of the basin of attrac-
tion for zA. The recovery rate is the inverse recovery time and
characterizes the pathway’s ability to respond to stress and relax
toward the equilibrium position after a shock.

The model suggests that the depolarization transitions occur
independently from pathway activation, but their cumulative
effect slowly reshapes the free energy landscape of regulatory
fields for other FUs (see the dashed blue line in Fig. 3C). In other
words, stochastically accumulated changes are tiny and not criti-
cal in the short term, but their accumulated effect slowly gnaws

(B)(A)

Figure 4. Computed configuration entropy. (A) For the distribution of the DNAmethylation and (B) for the EMR features in subsequent age-matched
cohorts increasing linearly as a function of age after 40 y.
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away the organism’s resilience and stability. Because the number
of transitions is enormous, the central limit theorem comes into
play38 and ensures that the net effect of configuration changes
on any physiological process must be proportional to the total
number of depolarization transitions Zt.

Over longer time scales, well exceeding pathway equilibration
times ∼rA−1, the stochastic component of zA fluctuations aver-
ages out. The mean pathway activation and variance are then
given by (see the Materials and Methods section)

<zA>t ≈
βAZt + JA
rAðZtÞ

σz2ðtÞ∼
T

rAðZtÞ
(8)

Here, rAðZtÞ= rA0 − r 0
AZt is the age-adjusted recovery rate,

whereas βA, and r0A are the small and pathway-specific quantities
characterizing the weak mode-coupling effects leading to the
compound (and hence proportional to Zt) effect of depolarization
processes on pathway activation and resilience, respectively.

Accordingly, the fluctuations of organism state variables other
than stochastic variables described in Equation (6) can be attrib-
uted to a few clusters of coregulated features participating in
pathways characterized by the slowest recovery rates (vanishing
denominators in Eq. 8). In this case, the participation vectors bAi
and the pathway activation variables zA should approximately
coincide with the leading PC loading vectors and scores,
respectively.

According to Equation (8), an increasing number of depolariza-
tion transitions Zt causes progressive shifts in pathway activation.
Notably, this effect is indistinguishable, albeit smaller than the
effects of constant stress modeled by JA. More subtly, aging in
the form of progressive depolarization of an organism state mea-
sured by Zt also affects the recovery rates in the denominator of
Equation (8). The two effects combine and cause the mean path-
way activations and therefore the leading PC scores in the data
depend on age in a nonlinear—hyperbolic fashion (see the
dynamics of DNAm-PC3 in Fig. 1C and EMR-PC2 in Fig. 2A).

The nonlinear coupling of organism-state fluctuations with
depolarization transitions may reduce one of the smallest recov-
ery rates to zero: rðZtÞ= r0 − r0Zt = r0ð1 − t=tmaxÞ at some point
late in life at age tmax = r0=ðr0dZt=dtÞ. The situation corresponds
to the critical point corresponding to the complete loss of resil-
ience, that is, the inability of the system to retain its homeostasis
equilibrium and hence it is incompatible with survival18.

There is no way to measure the recovery rate in cross-sectional
data. However, according to Equation (8), the vanishing recovery
rate should lead to the simultaneous divergence of one of the lead-
ing PC scores and its variance at a certain advanced age. In our
analysis, DNAm-PC3 increases faster than linearly as a function
of chronological age. Thefit of theDNAm-PC3 scores to the hyper-
bolic solution for the average zA from Equation (8) gives tmax ≈
130 y (see the solid line in Fig. 1C and the Materials and
Methods section, for the details of the calculations).

In agreement with Equation (8), the extrapolation shows that
the inverse variance of DNAm-PC3 hits zero and hence the vari-
ance of DNAm-PC3 diverges at approximately 120 y (see the solid
line in Fig. 1D). The estimations of the limiting age from the
behavior of DNAm-PC3 mean and its variance are comfortably

close. Hence, our calculations support the existence of a critical
point in the age range of 100 − 150 y.

In reality, the disintegration of the organism state happens well
before reaching the criticality at the limiting age tmax. Stress fac-
tors and the depolarization of the organism state do not merely
shift the mean pathway activation levels. Both factors may also
decrease the activation energy separating the organism state from
disintegration and death (Fig. 3C). In the linear regime, the
activation energy linearly depends on the mean field,
UactðZtÞ=U0

act − U 0Zt, where U 0
=dU=dZ.

Mortality in the model is nothing else but the probability of
barrier crossing per unit time: M∼ expð−U0

act=TÞ expðU0Zt=TÞ.
Therefore, the aging drift in the form of the linearly increasing
number of the configuration transitions registered by the progres-
sively increasing Zt ∼ t may drive the exponential acceleration of
all-cause mortality with age: M∼ expðΓtÞ. The mortality dou-
bling rate, Γ=T−1U0dZt=dt, in the model depends on the details
of the regulatory interactions (through U0), the rate of the aging
drift dZt=dt, and the effective temperature T.

Discussion

We put forward a semiquantitativemodel of aging in a complex
regulatory network and applied it to the analysis of human aging
signatures in a cross-sectional white-blood-cell DNAm dataset29

and the extensive collection of longitudinal EMRs from the UK
Biobank30. The model explains the dynamics of aging signatures
in both signals by the cumulative effect of numerous stochastic
configuration changes accompanied by increasing entropy.

The data suggest that the rates of transitions among micro-
scopic states of methylation or the incidence of specific diseases
are slow. In most cases, fewer than a single transition occurs
throughout lifetime for each FU. Even though the transition rates
are slow, the number of transitions is vast: more than 25% of all
CpG sites exhibited age-related dynamics. Hence, the compound
effects of transitions accumulate and dominate the dynamics of
the physiological state in the long term. We observed that in
the leading aging signature explaining most of the variance in
the data (the first PC score), which increased linearly with age
in the DNAm and EMR data. The first PC score was proportional
to the number of configuration transitions Zt (the number of
DNAm level changes or chronic diseases). Simultaneously, the
first PC variance grew linearly with age in both datasets, as is
expected for a stochastic quantity representing accumulation of
a large number of independent random transitions. Accordingly,
we propose using Zt as a quantitative measure of the net effect
of entropic changes on the aging organism—tBA (tBA∼Zt). The
first PC score is then a good proxy of tBA for a specific signal well
correlated with age and Horvath’s DNAm age. Due to the central
limit theorem38 for a large number of random transitions, tBA
would increase linearly with age with a high accuracy. That
explains why it is almost always possible to build an accurate pre-
dictor of chronological age for different biomedical signals4,5,8.

Configuration transitions do not only work as a natural clock in
aging organisms but also define the thermodynamic arrow of
time. Our model suggests that tBA is proportional to entropy pro-
duced (information lost) during aging. Particular depolarization
patterns may differ in various cells of one organism or among dif-
ferent organisms of the same age. However, the number of tran-
sitions would be comparable and hence quantify the overall aging
state of an organism. In other words, the older an organism gets
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the more “rust” it accumulates, which is captured by tBA. We
expect that the present model can generalize to other FUs and
readouts changing over time, such as gene expression changes39,
conformation or chemical modifications of macromolecules, DNA
damage, etc. Because configuration changes occur simultane-
ously in every part of an organism and increase its tBA, observa-
tion of a change in any single data modality cannot be interpreted
as the cause of aging drift in other modalities. The inherent sto-
chasticity of aging epigenome may explain why genetically iden-
tical pairs of twins diverge with age40,41 and may drive
transcriptomic dysregulation in cancer42.

The aging drift manifests itself as a “mean field” causing the
shift of physiological indices that is proportional to tBA. The
mean-field theory is a powerful approximation for understanding
the behavior of interacting systems first developed in physical sci-
ences43 and since then applied in statistical inference44 (see,
e.g., protein structure prediction45,46). Here, we modeled the
overwhelming complexity of FU interactions by a simpler
approximation, where each FU or large FU clusters operate inde-
pendently and substitute cumulative effects of all other FUs by
their mean field represented by tBA. Other than the dominant
aging PC1∼tBA in biological signals, other leading PCs with
the longest recovery times and strongest fluctuations would also
change with age. The aging drift affects those modules or path-
ways in a way similar to other stresses (such as smoking or diet).
Because tBA increases linearly with age, we expect that, in the
first approximation, all pathways “follow” the aging process by
increasing (or decreasing) activation barriers linearly with age.
In a higher-order approximation, the nonlinearity of regulatory
interactions produces significant deviations from a simple linear
age dependence of nondominant PC scores in biomedical data
(DNAm-PC3 and EMR-PC2). Nonlinear regulatory interactions
let the configuration changes (but not stresses) affect the resil-
ience defined as the ability of an interacting FU cluster to respond
to a perturbation and relax to equilibrium afterward. If the recov-
ery rate is slow, this may lead to a divergence of organism state
fluctuations at a critical age, where the recovery rate would van-
ish completely. For example, this happens for the dynamics of
DNAm-PC3 because the extrapolation of the mean and variance
of DNAm-PC3 diverges at an age close to tmax ≈ 130 y. Recently,
we also demonstrated that linear log-mortality predictors built
from complete blood counts and physical activity18 exhibited sim-
ilar diverging fluctuations and a vanishing recovery rate at about
the same limiting age tmax ≈ 130 y.

Hence, the prediction of mortality (or the remaining lifespan)
in humans requires an estimate for tBA∼Zt and for a few most
crucial pathway activations (also, on average, depending on Zt).
Hence, no single BAmeasure fully describes longevity in humans.
We expect that the BAmodels trained to predict chronological age
should yield better estimates of tBA. On the other hand, the mod-
els trained to predict the remaining lifespan (such as PhenoAge47,
GrimAge10, DOSI18, etc.) should return a combination of path-
way activations associated with the prevalence of diseases
and accelerated mortality13 and hence be better suited for the
detection of reversible effects of diseases, lifestyles, and medical
interventions15.

The PCA of human biomedical data is peculiar because it pro-
duces more than a single age-dependent feature, which is not the
case in simpler animals such as worms48, flies49, or mice50, where
aging could be explained by a dynamic instability leading to the
exponential disintegration of an organism state49,51. We expect
that the entropic contribution to aging is not dominant in those

cases, and the BA is a dynamic (not entropic) factor, and the aging
effectsmay be reversible in those animalmodels50. The loss of sta-
bility signs in the DNAm-PC3 hint at a two-stage aging process in
humans. Our model explains how the entropic changes reduce
resilience and the recovery rates of protective mechanisms (hall-
marks of aging). The stochastic accumulation of regulatory noise
or deleteriousness of the environment lead to an exponential
destabilization of the organism state. Therefore, we conclude that
the cumulative effect of entropic changes captured by tBA
explains the exponential mortality and disease incidence acceler-
ation—a characteristic feature of human aging.

The present model along with other direct dynamics stability
analyses of organism statefluctuations in longitudinal biomedical
data16,18 support the idea that the human organism state (and
potentially other long-lived mammals, such as naked mole rats)
staysmetastable until very late in life, and slowly loses its stability
and resilience with age due to accumulation of entropic changes.
According to the model, human aging has a significant entropic
component, which not only dominates the variance in biomedical
data but also causes increasing stress on adaptive subsystems
(stress responses). Our approach is in line with Hayflick’s pro-
posal52 that distinguishes the genetic determinism of longevity
from the stochasticity of aging. If the proposition is accurate,
we must expect that although the hallmarks of aging (features
or activations of specific adaptive pathways leading to mortality
and morbidity acceleration1) can, in principle, be reverted, the
expected effects of such interventions on lifespan may be tran-
sient and limited.

We expect that attempts to reduce the dominant aging signa-
ture tBA would require availability and timely application of an
immense number of precise interventions. This is, to say the least,
technologically challenging. Accordingly, we predict that aging in
humans can be reversed only partially. The fact that there is a
strong entropic contribution to aging does not necessarily mean
that one cannot reset some of the organismal subsystems closer
to a younger state. The entropic character of aging implies that
age reversal would be limited to a specific organismal subsystem
without a full rejuvenation of the whole organism. For example,
recent epigenetic reprogramming experiments53–55 led to the
reversal of epigenetic clock readouts.

However, our model suggests that achieving strong and lasting
rejuvenation effects in humans may remain a remote perspective.
However, there may be a more practical way to intercept aging
by dramatically slowing the rate of aging. The rates of entropic
transitions between any two states depend exponentially on the
effective temperature. Hence, even minor alterations of the effec-
tive temperature may cause a dramatic drop in the rate of aging.
In condensed matter physics, this situation is known as glass tran-
sition, where the viscosity and relaxation times may grow by
10–15 orders of magnitude in a relatively narrow temperature
range56–63. We note that living organisms are nonequilibrium
open systems, and hence the effective temperature is not the same
as body or environment temperatures. Rather, the effective tem-
perature is ameasure of howdeleterious the environment is for an
organism33.

We speculate that the evolution of long-lived mammals may
have provided an example of tuning the effective temperature.
Naked mole rats are known for their exceptional stress resistance,
DNA repair efficacy64–67, and translational fidelity68,69. Those
factors should reduce noise in regulatory circuits and lower the
effective temperature of the system. One example of such tuning
may be used to explain the recent studies indicating that naked
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mole rats breeders age slower than their nonbreeding peers, at
least according to the DNAm clock25. Social status and mental
health also impact the aging rate measured by DNAm and other
clocks in humans31,70, possibly via neuroendocrine system.
Higher socioeconomic status, somewhat counter-intuitively, sig-
nificantly increases the mortality doubling rate and simultane-
ously reduces the age-independent mortality in such a way that
mortality in the highest and lowest income groups converge at
an age close to our tmax estimates71. Such a behavior of mortality
is consistent with a reduction in the effective temperature in the
higher-income cohorts in our model.

Future studies should help establish the best ways to “cool
down” the organism state and reduce the rate of aging in humans.
The simple linear PCA exemplified here may only help gain a
qualitative understanding of underlying processes. We expect
that increasing availability of high-quality longitudinal biomedi-
cal data will lead to a better understanding of themost critical fac-
tors behind the kinetics of aging and diseases, including those
controlling entropy production in the course of aging. This should
lead to a discovery of actionable targets influencing the rate of
aging, help slow down aging, and thus produce a dramatic exten-
sion of human healthspan.

P.S. Since our first publication of a preprint of this article, it
inspired a number of follow-up works by other groups. For exam-
ple, three papers investigated the stochastic nature of aging by
extensive simulations and analyses of gene expression and
DNAm data and supported our original proposal that the domi-
nant component of aging changes was stochastic: on a single-cell
level72, for DNAm-based clocks73, and gene expression74. The
studies of dynamical properties of stochastic changes in
DNAm75 and other longitudinal signals in mice50 in the course
of aging and in response to antiaging interventions also corrobo-
rated our analyses and predictions regarding the distinction
between entropic/irreversible and dynamic/reversible compo-
nents of aging signatures.
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