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Changes in the epigenetic landscape are a hallmark of aging that contributes to the irreversible decline in
organismal fitness ultimately leading to aging-related diseases. Epigenetic modifications regulate the cel-
lular memory of the epigenetic processes of genomic imprinting and X-chromosome inactivation (XCI) to
ensure monoallelic expression of imprinted and X-linked genes. Whether aging-associated epigenetic
changes affect the maintenance of genomic imprinting and XCI has not been comprehensively studied.
Here, we investigate the allele-specific transcriptional and epigenetic signatures of the aging brain, by com-
paring juvenile and old hybridmice obtained fromC57BL/6J (BL6) and CAST/EiJ (CAST) reciprocal crosses,
with an emphasis on the hippocampus (HCP).We confirmed that the agedHCP showed an expected increase
inDNAhydroxymethylation and a typical aging transcriptional signature. Importantly, genomic imprinting
was largely unaffected, with stable parent-of-origin-specific DNA methylation in multiple brain regions
including the HCP, cerebellum, nucleus accumbens, hypothalamus, and prefrontal cortex. Consistently,
allele-specific transcriptomic bulk analysis confirmed unaltered imprinting expression in the aged HCP.
An exception was four novel non-coding transcripts (B230209E15Rik, Ube2nl, A330076H08Rik, and
A230057D06Rik) at the Prader-Willi syndrome/Angelman syndrome imprinted locus, which lost strict
monoallelic expression during aging. Similar to imprinting, XCI was remarkably stable with no signs of
aging-driven skewing or relaxation of monoallelic expression of X-linked genes. Our study provides a valu-
able resource for evaluating monoallelic expression in the aging brain and reveals that, despite the known
epigenetic changes occurring during aging, genomic imprinting and XCI remain predominantly stable
throughout the process of physiological aging in the mouse brain.

Introduction

Aging can be defined as an irreversible loss of physiological
integrity associated with the functional decline of tissues and
organs, progressively leading to aging-related illnesses, such as
neurodegenerative diseases1. At themolecular and cellular levels,
several hallmarks have been associated with aging, including
changes in the epigenetic landscape2,3. DNA methylation is
affected by these aging-related epigenetic changes. Here, cytosine
Bases followed by guanine, known as CpG sites, can acquire a
methyl group at the C-5 position (5-methylcytosine [5mC]).

Some regions of the genome can undergo age-induced gains
and losses in DNA methylation, and these changes can condition
their pattern of gene expression4. This pattern of DNA methyla-
tion changes during lifespan can be used as an “epigenetic clock”
to predict chronological age5,6. This phenomenon indicates that
challenges in preserving epigenetic marks may lead to changes
in accessibility and gene expression patterns that, in turn, impact
the cellular and molecular functions of aged cells5.

Neurons, as long-lived post-mitotic cells in the brain, are charac-
terized by an evolving epigenetic landscape during differentiation,
maturation, and aging, making them a prime target for studying
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cellular aging in the context of brain function and health7–11.
Disease signatures based on DNA methylation patterns have also
been linked to a variety of age-related neurological and psychiatric
disorders12–15. 5mC can be catalyzed to 5-hydroxymethylcytosine
(5hmC) by the ten-eleven translocation (Tet) family of dioxyge-
nases as a part of the active DNA demethylation cycle. While much
less abundant than 5mC, 5hmC levels are particularly high in the
adult brain when compared with other somatic tissues10 and accu-
mulate during aging16–18. The precise significance of 5hmC in the
brain and its accumulation during lifespan has been postulated to
result fromenhancedDNAdemethylation activity necessary for the
epigenetic regulation of brain-specific genes involved in neurode-
velopmental processes and neuronal function and plasticity19. The
dynamic changes in 5mC and 5hmC in the brain are illustrative of
the different layers of complex epigenetic regulation used by neu-
rons and other brain cells to integrate signals and outputs under-
lying highly skillful processes such as learning and memory.

Epigenetic mechanisms, such as DNA methylation, are main
actors in the regulation of monoallelic expression of genes, play-
ing a crucial role in the establishment and/or maintenance of the
mammalian epigenetic processes of genomic imprinting and
X-chromosome inactivation (XCI)20. Many genes regulated by
these processes have critical roles in brain development and func-
tion and are thought to contribute to the diversity and specializa-
tion of neuronal cells21. Whether aging-associated epigenetic
changes affect the heritability of monoallelic expression during
physiological aging and impact the aging process remains an open
question.

Imprinted genes consist of a unique subset of ~150 genes dis-
playing parental-of-origin-specific gene expression. The majority
are located in ~25 genomic clusters where their monoallelic
expression is dependent on DNA methylation at CpG-dense regu-
latory regions, known as imprinting control regions (ICRs)22. This
DNA methylation is asymmetrically deposited during female and
male germline development. Interestingly, a substantial number
of imprinted genes exhibit monoallelic or biased expression from
one parental allele in one tissue or at specific developmental
stage23,24. In this regard, the brain is one of the organs where
more genes show tissue-, isoform-, or developmental-stage-
specific imprinting25–27. Within the brain, this is highly regional-
ized, with different areas exhibiting their own set of monoallelic
or parentally biased expressed genes26,28. The importance of
imprinted genes in brain function is evidenced by the devastating
neurological and behavioral conditions such as Angelman and
Prader-Willi syndromes resulting from (epi)mutations affecting
the chr15q11-q13 region in humans29. Transcriptomic studies
have shown that imprinting expression in the cerebellum (CB)
is developmentally regulated25. Whether imprinting is also sus-
ceptible to changes as a function of aging has not been systemati-
cally addressed.

XCI is a dosage compensation mechanism that equalizes
X-linked gene expression of XX females to XY males30. This proc-
ess is established early in development and is regulated by the X-
inactive-specific transcript (XIST) long non-coding RNA (lncRNA).
During embryogenesis, XIST is upregulated randomly from one
of the two X chromosomes and becomes exclusively expressed
from the inactive X chromosome (Xi). This lncRNA engages in
a complex interplay with several RNA-binding proteins to recruit
transcriptional repressors and chromatin modifiers, establishing
the silenced state of the Xi31,32. Although the molecular mecha-
nisms underlying the initiation of XCI have been extensively elu-
cidated, our understanding of the long-term maintenance of XCI

throughout an organism’s lifespan remains limited. Recent inves-
tigations in aging, with a focus on the hematopoietic cell lineage,
reveal an escalation in XCI skewing, where one parental allele is
preferentially inactivated33 along with subtle alterations in DNA
methylation patterns and gene expression across the X chromo-
some34,35. Interestingly, a separate study conducted in the brain,
employing single nuclei transcriptomics, unveiled an intriguing
finding:Xist expression is observed to be upregulated in aged neu-
rons located within the hypothalamus and hippocampus (HCP) of
femalemice36. The implications of this observation on XCI remain
ambiguous, underscoring the necessity for in-depth investiga-
tions to elucidate the influence of aging on XCI within the context
of the brain.

In the present study, we provide the first allele-specific epige-
netic and transcriptional landscape of the aging mouse brain. We
particularly focus on the HCP, a key regulator brain area of cog-
nitive processes that tend to decline during aging. We used juve-
nile (8–9 weeks) and old (>100 weeks) F1 hybrid mice from
reciprocal crosses between distantly related mouse strains to gain
allelic resolution. DNA methylation and transcriptomic analysis
enabled us to discern the impact of aging on monoallelic expres-
sion in the brain. Our results support the stable epigenetic inher-
itance of genomic imprinting and XCI during physiological aging
of the mouse brain.

Materials and Methods
Ethics

Animal welfare and experimental procedures were conducted
according to the ethical guidelines of the European Directive
2010/63/EU and the Portuguese legislation DL 113/2013 and
were approved by the responsible Ethical Committee of Instituto
de Medicina Molecular João Lobo Antunes (iMM) and the
Portuguese competent authority, Direção Geral de Alimentação e
Veterinária (license number 023357/19).

Animals
Mice colonies of Mus musculus C56BL/6J (BL6) strain and Mus

musculus castaneus CAST/EiJ (CAST) strain were obtained from
the Jackson Laboratory andmaintained at the iMMRodent facility.
Animals were housed in a maximum of five per cage in a temper-
ature- and humidity-controlled room (24°C, 45%–65%) with a
14/12 hour light/dark cycle. Animals were fed diet ad libitum.

Reciprocal crosses between BL6 and CAST animals—BL6/CAST
(BL6 female and CAST male) and CAST/BL6 (CAST female and
BL6 male) were established to generate F1 animals. Juvenile
and old F1 animals were developed and sacrificed by cervical dis-
location in the range of 8–9 weeks and 102–104 weeks, respec-
tively. A total of 10 young female (six BL6/CAST and four
CAST/BL6), four young male (two BL6/CAST and two CAST/
BL6), seven old female (five BL6/CAST and two CAST/BL6),
andfive oldmale (twoBL6/CAST and three CAST/BL6)were used
in this study (Table S1). Female mice were not synchronized for
the estrous cycle.

Samples preparation
Sacrificed animals were decapitated by cervical dislocation.

The brains were quickly removed and the whole CB and hypo-
thalamus were rapidly isolated from the brainstem. The following
brain areas were then dissected according to the atlas of stereo-
taxic coordinates of mouse brain37 and immersed in liquid
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nitrogen for 4 sec: HCP (from bregma, Anterior/Posterior [AP]:
from −1.34 to −2.56 mm; Medial/Lateral [ML]: ±0 mm;
Dorsal/Ventral [DV]: −3 mm), medial prefrontal cortex (from
bregma, AP: from −2.10 to −1.70 mm; ML: ±0 mm; DV:
−3.5 mm), and nucleus accumbens (from bregma, AP: from
−1.54 to −0.98 mm; ML: ±0.5 mm; DV: −4 mm). Lung tissue
was also collected. After collection, brain areas and lung tissue
were immediately frozen in liquid nitrogen and stored at
−80°C for later molecular analysis. DNA and RNA were isolated
for each brain area or lung tissues from the selected animal tissues
using the NucleoSpinTriPrep kit (Cat# 740966.50, Macherey-
Nagel GmbH&Co.KG, Germany) according to the manufacturer’s
guidelines.

5mC/5hmC measurements by liquid
chromatography–mass spectrometry (LC-MS/MS)

Genomic DNA from the CB, HCP, and lung of both juvenile and
old female mice was digested using DNA Degradase Plus (Cat#
E2020, Zymo Research) according to the manufacturer’s instruc-
tions. Nucleosides were analyzed by LC-MS/MS on a Q-Exactive
mass spectrometer (Thermo Scientific) fitted with a nanoelectros-
pray ion source (Proxeon). All samples and standards had a heavy
isotope-labeled nucleoside mix added prior to mass spectral analy-
sis (2 0-deoxycytidine-13C1, 15N2 [Cat# SC-214045, Santa Cruz],
5-(methyl-2H3)-2 0-deoxycytidine [Cat# SC-217100, Santa Cruz],
5-(hydroxymethyl)-2 0-deoxycytidine-2H3 [Cat# H946632, Toronto
Research Chemicals]). MS2 data for 5hmC, 5mC, and C were
acquired with both the endogenous and corresponding heavy-
labeled nucleoside parent ions simultaneously selected for fragmen-
tationusing a 5Th isolationwindowwith a 1.5Thoffset. Parent ions
were fragmented by higher-energy collisional dissociation with a
relative collision energy of 10% and a resolution setting of
70,000 for MS2 spectra. Peak areas from extracted ion chromato-
grams of the relevant fragment ions, relative to their corresponding
heavy isotope-labeled internal standards, were quantified against a
six-point serial twofold dilution calibration curve, with triplicate
runs for all samples and standards.

Bisulfite treatment
Genomic DNA (1 μg) from the CB, HCP, hypothalamus, medial

prefrontal cortex, nucleus accumbens, and lungof four juvenile and
four old female mice (two animals for each reciprocal cross) was
bisulfite converted using the EZ DNA methylation Gold kit
(Cat# D5006, Zymo Research) according to the manufacturer’s
instructions. After column cleanup, the DNA was eluted in an elu-
tion buffer (66 μl) to obtain a final concentration of ~15 ng/μl
bisulfite converted DNA.

IMPLICON library preparation and analysis
IMPLICON was performed as previously described38 for the CB,

HCP, nucleus accumbens, prefrontal cortex, hypothalamus, and
lung of four juvenile and four old femalemice (two animals for each
reciprocal cross). Briefly, following bisulfite conversion, a first pol-
ymerase chain reaction (PCR) amplifies each region per sample in
individual reactions, adding adapter sequences, aswell as eight ran-
dom nucleotides (N8) for subsequent data deduplication. PCR con-
ditions and primers for this first step are listed in Table S2. Primers
cover 11 imprinted clusters (10 ICRs and exon1a promoter of Ddc
gene), together with two unmethylated (Sox2, Klf4) and one
methylated (Prickle1) control regions. After pooling amplicons
for each biological sample and clean-up using AMPure XPmagnetic

beads (Cat# A63880, Beckman Coulter), a second PCR completes a
sequence-ready library with sample barcodes for multiplexing. In
this PCR reaction, barcoded Illumina adapters are attached to the
pooled PCR samples ensuring that each sample pool receives a
unique reverse barcoded adapter. Libraries were verified by run-
ning 1:30 dilutions on an Agilent bioanalyzer and then sequenced
using the Illumina MiSeq platform to generate paired-end 250 bp
reads using the indexing primer with the following sequence,
5 0-AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC-3 0 and
10% PhIX spike-in because the libraries are low complexity.
We run two independent IMPLICON libraries that were named:
first run (lane 7651) and second run (lane 7950). The first run
contained the CB, HCP, nucleus accumbens, prefrontal cortex,
hypothalamus, and lung of four juvenile and four old female
mice, while the second run contained the samples of CB, HCP,
and lung of the same mice.

IMPLICON bioinformatics analysis was also performed as
described previously38, following the step-by-step guide of
data processing analysis in https://github.com/FelixKrueger/
IMPLICON. Briefly, data were processed using standard
Illumina base-calling pipelines. As the first step of processing,
the first 8 bp of Read 2 were removed and written into the
readID of both reads as an in-line barcode or unique molecular
identifier (UMI). This UMI was then later used during the dedu-
plication step with “deduplicate bismark barcode mapped_
file.bam.” Raw sequence reads were then trimmed to remove both
poor-quality calls and adapters using Trim Galore v0.5.0 (www.
bioinformatics.babraham.ac.uk/projects/trim_galore/, Cutadapt
version 1.15, parameters: –paired). Trimmed reads were aligned
with the mouse reference genome in paired-end mode.
Alignments were carried out with Bismark v0.20.0. CpG methyla-
tion calls were extracted from the mapping output using the
Bismark methylation extractor. Deduplication was then carried
out with deduplicate_bismark using the barcode option to take
UMIs into account (see above). Thedatawere alignedwith a hybrid
genome of BL6/CAST (the genomewas prepared with the SNPsplit
package v0.3.4 [https://github.com/FelixKrueger/SNPsplit]).
Following alignment and deduplication, readswere split allele spe-
cifically with SNPsplit. Aligned read (.bam) files were imported
into Seqmonk software v1.47 (http://www.bioinformatics.
babraham.ac.uk/projects/seqmonk) for all downstream analysis.
Probes were made for each CpG contained within the amplicon
and quantified using the DNA methylation pipeline or total read
count options. Downstream analysis was performed using
Microsoft Excel spreadsheet software (v2206 Build 16. 0. 15330.
20144) and GraphPad Prism v8.0.1.

From the raw data deposited in gene expression omnibus (GEO)
under the accession number GSE148067, the reads mapped to the
following murine (mm10) genomic coordinates were excluded
from consideration in this article for one of the following reasons:
(1) regions that fail to reach the coverage threshold for the two
parental alleles in a given sample (>50 reads), including 3 of 13
imprinted regions, Igf2-H19, Igf2r, and Grb10, presented in our
original IMPLICON primer set38; (2) regions sequenced twice for
which only the runwithmore readswas considered; and (3) regions
out of the scope of this article. For the samples sequenced in lane
7651, this includes: Chr7:60005043-60005284, Chr7:142581761-
142582087, Chr12:109528253-109528471, Chr6:30737609-
30737809, Chr11:12025411-12025700, and Chr18:12972868-
12973155; for the samples sequenced in lane 7950, this includes:
Chr7:142581761-142582087, Chr7:142659774-142664092, and
Chr11:12025411-12025700.
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RNA sequencing
The quality of DNAse I-treated total RNA from female young and

old hippocampi (n= 5 old mice: n= 2 CAST-BL6 and n= 3 BL6-
CAST; n= 6 young mice, n= 3 of each reciprocal cross) was
checked by 2100 Agilent Bioanalyser. Samples with RNA integrity
number (RIN) score above 9 were processed. RNA (1 μg) was used
as input for PolyA+ directional RNA-seq library preparation using
the NEBNext Ultra II Directional RNA-seq Kit (#E7765, NEB) with
the PolyA mRNA magnetic isolation module (#E7490, NEB)
according to the manufacturer’s instructions. The pooled library
was sequenced on an Illumina HiSeq 2000 with a 2 x 100 bp kit.

Fastqs were processed using TrimGalore v0.6.6 in paired-end
mode with default parameters. Validated read pairs were then
aligned with the GRCm38.v5 mouse genome using Hisat2 v2.1.0
with the following parameters: –dta, –no-softclip, –no-mixed, and
–no-discordant. The resulting hitswerefiltered to removemappings
withMappingQuality (MAPQ) scores of< 20 and then converted to
BAM format using Samtools v1.10. Allele-specific alignments were
also performed by realigning mapped reads to N-masked genomes
C56BL/6 J (genome 1) and CAST/EiJ (genome 2), which was
based on the GRCm38.v5 genome and generated using the
SNPsplit v0.3.4 package. Reads that were then sorted by allele-
specificity for either genome or reads containing conflicting
SingleNucleotide Polymorphism (SNP) informationwere excluded.
Total and allele-specific read counts were quantified from BAMs
with feature counts (from the subreadv2.0.0 package) using default
parameterswith gencode vM25 annotations. Basic statistics on read
counts and mappability are provided in Table S3.

We used SNP information to measure allele-specific expression
(ASE) and performedDESeq2 analysis betweenmaternal and pater-
nal alleles, excluding those genes that exhibited random (i.e., genes
with monoallelic expression independent of parental origin or
strain) or strain-dependent (i.e., all genes with biased expression
according to the genetic background) monoallelic expression.

DESeq2 v1.34.0 package in an R (v4.1.2)/R Studio (v2022.02.0
+443) environment was used thus for conducting all differential
gene expression analyses (including total and allele-specific
analyses). For all analyses (including gene level), low expressed
genes were first filtered (genes with≥ 10 read counts across both
alleles in each sample and ≥ 1 TPM in each sample across all sam-
ples were kept). For allele-specific analyses, allelic ratios were
first derived by dividing the maternal or paternal allele counts
by the total number of allelic counts (ratios are between 0 and
1). These allelic ratios were then used as input into DESeq2 after
adjusting size factors to 1 for each sample (to account for allelic
ratio input). To determine ASE (either maternal or paternal)
across all mice, a DESeq design (~0+ age+ genome + sample
+ allele) was used with blocking terms against age group and
the genome of origin for each allele to reduce the impact of
age- or cross-specific allelic expression. To determine ASE (either
maternal or paternal) in young and oldmice separately, a separate
DESeq2 design (~0+ genome+ age+ age:sample+ age:allele)
was used. Contrasts were then made between old and young mice
to determine age-specific and ASE changes that were attributed to
age. Genes with ASE were considered as those with an absolute
log2FoldChange> 1 and adjusted p-value (Benjamini–Hochberg
adjusted)< 0.05. For calculating the proportion of reads aligning
to the mouse genome, aligned reads on ChrX were counted from
BAMs using feature counts either in an allele-specific context
(post-SNPsplit for BL6 and CAST alleles) or allele-independent
context (pre-SNPsplit). These counts were then divided by the
total number of aligned reads and multiplied by 106 to obtain

ChrX reads per million. ChrX count proportions for the BL6 allele
were determined by dividing BL6 counts on ChrX by the total read
counts on ChrX across both alleles (post-SNPsplit).

Principal component analysis (PCA) was conducted using the
prcomp function from the stats v4.1.2 R package using DESeq2
normalized counts for all genes. Barplots, boxplots, and volcano
plots were plotted using the ggplot2 v3.3.5 R package, and heat-
maps were constructed using the ComplexHeatmap v2.10.0 R
package. The genomic distribution of imprinted genes on chromo-
somes was plotted using the karyoplotR v1.20.3 R package. Track
plots of normalized read densities (for RNA-seq data) were plot-
ted for several genomic loci of interest using the rtracklayer
v1.54.0 and Gviz v1.38.4 R packages.

For the analysis of the bulk HCP dataset fromHahn et al.39, raw
gene counts were obtained fromGEO under the accession number
GSE212336. This dataset was subsetted for samples originating
from female mice hippocampi (both posterior and anterior sites)
for comparison with the data generated in this study. In this com-
parison, young mice were considered to be 3 months old, while
oldmicewere considered to be 21months old. These are the time-
points that better match our young (~2 months) and old
(~24 months) animals. We performed differential gene expres-
sion analyses between old and young mice in this dataset using
DESeq2 with a design (~anatomical_site+ age) and the same
thresholds for statistical significance as above was considered
(absolute log2FoldChange> 1, BH-adjusted p-value< 0.05).
Heatmaps for these data were plotted for various genes using
ComplexHeatmap, wherein DESeq2 normalized counts were sub-
ject to z-score normalization across samples within the same tis-
sue type prior to plotting (note for the heatmap, animals of 12, 15,
and 18 months old from Hahn’s dataset were also considered). To
summarize gene expression signatures (upregulated and downre-
gulated), the mean of z-score normalized values across the rel-
evant genes for each signature was taken. Column graphs for
various genes were plotted for these data using ggplot2.

CIBERSORTx analysis
Single-cell RNA-seq datasets in the form of UMI count matrices

were retrieved for the hippocampi of four mice (two young and
two old) from GEO under the accession number GSE16134040.
Matrices were loaded and processed using the Seurat v4.2.041

R package (Read10X > CreateSeuratObject >merge). The fraction
of reads aligned to mitochondrial (mt-) or ribosomal (Rps|Rpl|
Mrps|Mrpl) genes out of all reads was calculated for each cell
using PercentageFeatureSet. Cells were quality filtered for the
UMI counts (100< n< 20000), number of genes expressed
(200< n< 6000), mitochondrial read (<0.1), and ribosomal read
(<0.5) fractions. Data were then subjected to normalization and
scaling using SCTransform with the top 3000 variable genes.
PCAs (RunPCA), mutual nearest neighbors (FindNeighbors, top
30 principal components), Uniform Manifold Approximation
and Projection (UMAP) dimensional reduction (RunUMAP),
and clustering (FindClusters, resolution= 1) were then per-
formed. Gene signatures were constructed using canonical cell
type marker genes defined in a comparative scRNA-seq study
of mouse hippocampi in the literature42. Module scores that sum-
marize the gene expression of canonical gene signatures among
cell types were then computed using AddModuleScore. Violin
plots were plotted using VlnPlot. Cell type classifications were
made per cell cluster, wherein median cell type signature scores
surpassing 0 were used to assign a given cell type. For
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Figure 1. Workflow of the allele-specific methylation/transcriptional profiling of the aging brain. First, F1 hybrid mice were generated by cross-
ing C57BL/6J (BL6) females with Cast/EiJ (CAST) males (BL6/Cast) and reciprocally crossing CAST females with BL6 males (CAST/BL6) and aged for
~8weeks (YOUNG) and~104weeks (OLD). Second, young and oldmicewere sacrificed, and specific tissueswere dissected such as hippocampus (HCP),
cerebellum (CB), and lung. For dissection of the brain areas, stereotaxic coordinates of the mouse brain were used37. Dissection planes (red dotted lines)

(legend continued on next page)
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deconvolution analyses, each cell type was randomly down-
sampled to 100 cells (sample and subset). Downsampled raw
UMI count matrices with cell type annotations were further sub-
setted for genes commonly expressed in our bulk RNA-seq
dataset. This matrix was then input to CIBERSORTx43 (https://
cibersortx.stanford.edu/) as a single-cell reference matrix,
wherein a signature matrix was first derived to determine those
genes that accurately predicted each cell type (replicates [100],
sampling [0.5], and fraction [0.0]). Cell fractions were then
imputed for the HCP samples derived in this study (raw counts)
using the aforementioned signature matrix with CIBERSORTx,
without batch correction. Imputed cell fractions for each sample
were then plotted using the ggplot2 R package. Cell type propor-
tions in old and young mice were compared using pairwise t-tests
(BH adjusted to account for multiple comparisons).

We also analyzed single-cell RNA-seq data for Fluorescence-
Activated Cell Sorting (FACS)-sorted whole mouse brains (both
myeloid and non-myeloid cell types) from the Tabula Muris
Senis study, which profiled several whole young and old mouse
brains44. Thepre-processedRNA-seq counts containing 17 cell type
annotations for cell types identified in brain tissues contained
within the TabulaMurisSenisData R package (v1.0.0) were used
as input to CIBERSORTx to first derive a signature matrix (repli-
cates [15], sampling [0.5], and fraction [0.0]). Cell fractions were
then imputed for the HCP samples derived in this study with the
aforementioned signature matrix using CIBERSORTx.

Statistics
Statistical analysis used for each experiment is indicated in the

respective figure legend with p-values indicated or marked as
*p-value< 0.05, **p< 0.01, and***p< 0.001.According to thedis-
tribution of data analyzed by the Shapiro–Wilk test, the following
tests for the differential analysis of the experiments were used:
unpaired two-tailed Welch’s t-test (Fig. 2A), two-way ANOVA fol-
lowed by Tukey’s multiple comparisons test (Fig. 3B,C; Fig. S3A),
three-way ANOVA by Tukey’s multiple comparisons test (Fig. S3B,
for the cross), and Kruskal–Wall by Dunn’s multiple comparisons
test (Fig. S1A,B). Differential (allelic or non-allelic) expression
analysis of RNAseq data was conducted using DESeq2 package.
Comparisons were considered statistically significant after a Wald
test with Benjamini–Hochberg adjustment of p-values to account
for multiple comparisons when adjusted p-values were< 0.05
and absolute log2FoldChange> 1. For the gene set enrichment
analysis (GSEA) of differentially expressed genes (DEGs), the log
adj p-value for each enriched gene set and normalized enrichment
score (NES) were considered for the analysis (Fig. 2Cii; Fig. S2).

Results
Increase in 5hmC levels is a hallmark of the
aging HCP

Todecipher the allele-specific epigenetic and transcriptional fea-
tures of the aging brain, we established reciprocal crosses between
BL6 and CAST mice to generate female and male BL6-CAST and
CAST-BL6 F1 hybrid mice (Fig. 1). The use of F1 hybrid mice from
genetically distant murine strains allows the distinction of parental

alleles based on frequent genetic variants on regulatory regions and
genes. The use of reciprocal crosses allows for the distinction
between parent-of-origin and genetic allelic effects25,45. These
mice were sacrificed at 8–9 weeks (young) and> 100 weeks
(old) of age and different brain areas as well as other organs were
collected for DNAmethylation and transcriptomic analyses (Fig. 1;
Table S1). We concentrated our study on the HCP and the CB,
which are important regions for cognitive function often impaired
during aging, with the lung used as a non-brain control.

We first evaluated the overall levels of 5mC and 5hmC by LC-
MS/MS in young and old tissues from female and male animals of
both reciprocal crosses (Table S1). 5mC levels did not differ sig-
nificantly among CB, HPC, and lung and were not affected by age
(Fig. 2Ai). In contrast, 5hmC levels were higher in neuronal tis-
sues, especially in the HPC, where it increased further with aging
(Fig. 2Aii), independent of the direction of the cross or biological
sex (Fig. S1A,B; Table S4). This corroborates previous results on
aging-induced increase in 5hmC levels17,46 and confirmed that
increase in 5hmC is a hallmark of the aged HCP.

Transcriptomic signatures of the aged HCP
We next examined alterations in the transcriptome occurring

during aging of the HCP by employing RNAseq on samples
obtained from both young and old mice. We selected the HCP
due to the increase in 5hmC levels associated with aging.
Specifically, we performed RNAseq analysis of female HCP, com-
prising a total of five samples from aged mice (two CAST-BL6 and
three BL6-CAST individuals) and six samples from young mice
(three individuals from each reciprocal cross). Clustering using
PCA did not distinguish between mice of opposite reciprocal
crosses, yet the combination of PC1 and PC2 was able to separate
old and young mice (Fig. S2A). This dataset was thoroughly scru-
tinized to assess shifts in the expression of genes associated with
the DNAmethylation machinery over the aging process as well as
to investigate the broader patterns of gene expression changes.

To better understand the cause leading to the increase in 5hmC
levels upon aging, we first analyzed expression levels of the Tet
methylcytosine dioxygenases (Tet1, Tet2, and Tet3) responsible
for the sequential conversion of 5mC to 5hmC, and subsequent
oxidation steps as a part of the active DNA demethylation path-
way47. No differenceswere observed for any of the threeTet genes
by RNAseq in HCP upon aging (Fig. 2Bi). Likewise, no differences
in the DNA methyltransferase genes (Dnmt1, Dnmt3a, Dnmt3b,
and Dnmt3l cofactor), responsible for catalyzing the transfer of
a methyl group to DNA, were observed between young and old
HPC (Fig. 2Bi). Curiously, a significant drop in Uhrf1 mRNA
expression, a gene encoding for a DNMT1-interacting protein
essential for maintenance of methylation through DNA replica-
tion48, was observed in the aged HPC (Fig. 2B). Uhrf1 downregu-
lation was not associated with measurable changes in 5mC levels
perhaps because aged HPC is composed mostly by postmitotic
cells. Overall, we rule out that the core DNA methyl/hydroxy-
methyl machinery is affected by aging.

Next, to conduct a broader analysis of gene expression, we
performed differential gene expression analysis that identified

on brain tissue are shown on a sagittal view of a mouse brain from the Paxinos atlas; regions are not drawn to scale. Both DNA and RNA were extracted
from the tissues and purified. Third, we perform the methylation and transcriptional profiling of young and old tissue samples, by measuring global
methylation levels, both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) using liquid chromatography with tandem mass spectrometry
(LC-MS/MS), by profiling allele-specificmethylation at imprinting regions using IMPrintampLICON (IMPLICON) and assessing allele-specific expression
(ASE) by RNA sequencing (RNAseq).
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(i) (ii)
(A)

(B)
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Tet1 Tet2 Tet3 Dnmt1 Dnmt3a Dnmt3b Dnmt3l Uhrf1

***

Old vs Young HCP

Figure 2. Global methylation and transcriptomic signatures of the aging brain. (A) (i) Global 5mC and (ii) 5hmC levels measured by LC-MS/MS in
CB, HCP, and lung of young and old female and male F1 mouse hybrids from reciprocal crosses between C57Bl/6J (BL6) and Cast/EiJ (CAST) strains.
Barplots represent the average percentage of 5mC or 5hmC± standard error of themean (SEM) of the total cytosines (C) for each three tissues. Individual
values are represented by dots and male (blue) and female (pink) mice are distinguished by colors (CB: female n= 5 of which three young and two old,
male n= 6 of which four young and two old; HPC: female n= 6 of which three young and three old, male n= 7 of which three young and four old; and
lung: female n= 10 of which five young and five old, male n= 10 of which five young and five old). Statistically significant differences are indicated as
*p-value < 0.05 between young and old mice per tissue (unpaired t-test, Welch’s correction). (B) Expression levels of DNA methylation/hydoxymethy-
lation-related genes, Tet1, Tet2, Tet3, Dnmt1, Dnmt3a, Dnmt3b, and Uhrf1measured by RNAseq. Barplots represent the average log10(TPM+ 1) expres-
sion levels ± SEM of the different genes in young and old female HCP (n= 6 young mice; n= 5 old mice). Statistically significant differences determined
by DESeq2 (Wald tests with BH adjustment of p-values to account for multiple comparisons) are indicated as ***adjusted p-value < 0.05 and

(legend continued on next page)
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75 upregulated and 115 downregulated genes during aging proc-
ess (adjusted p-value [P adj]< 0.05, absolute log2 fold change
[FC]> 1) (Fig. 2Ci; Table S5). Within the set of upregulated
genes, we observed the presence of genes associated with cell
cycle inhibition, such asCdkn2a, as well as several genes involved
in immune response and inflammation, such as Cd22, Clec7a,
Ctse, Lyz2, and C4b. Accordingly, previous single-cell RNAseq
analyses also identified Lyz2 as an aging marker of microglia
and C4b as an aging marker of astrocytes36. Downregulated genes
were involved in cell cycle progression and chromosome segrega-
tion (e.g., Kif4, Ect2, Esco2, andH2ac10), regulation of transcrip-
tion (e.g., Fos and Top2a), and neural development (e.g., Eomes
and Draxin).

We validated the transcriptomic differences between young and
old HCP by comparing it with a comprehensive dataset that pro-
filed 847 brain samples (spanning 15 anatomical regions and taken
from mice of varying ages between 3 and 28 months)39. Of rel-
evance to our study were samples from the anterior and posterior
HCP from 3, 12, 15, 18, and 21 months old female mice. We com-
pared the expression of all DEGs between young and oldHCP in our
study in the anterior and posteriorHCP from these femalemice and
observed gene expression trends that aligned with the direction of
our DEGs, as shown by average z-score plots (Fig. S2B). We next
specifically assessed DEGs between 3- and 21-month-old samples
in this dataset to assess the level of overlap with our dataset. For
this analysis, anterior and posterior HCP samples were analyzed
together to increase the power of comparisons between age groups
and not to miss any pan-HCP changes that we likely observe in our
dataset. Therewere 44 up- and 2 downregulated genes (adjusted p-
value< 0.05 and absolute log2FC> 1) in the Hahn et al. dataset39

of which 13 upregulated genes (Lyz2, C4b, Spag6, Lcn2, Bcl3,
Cd22, Itgax, Onecut1, Ccl3, AA414992, Upk1b, H2-Q7, and
Pcdhb2) and 1 downregulated gene (Eomes) were similarly differ-
entially expressed in our dataset (Table S5), indicating that 30.4%
of the DEGs in the Hahn dataset39 were also identified in our analy-
sis. This overlap was statistically significant (Fisher’s exact test
using all commonly expressed genes [n= 20960] between our
study and Hahn et al.’s study as the background [up: p-value=
2.3e−22, down: p-value= 0.011]). Of note, the hippocampal sam-
ples inHahn et al.39 are divided into the anterior/posterior regions,
whereas the hippocampal samples in our study are from the whole
HCP. These differences in anatomical sites could account for
unique gene expression in each dataset.

To address the potential impact differences in cell type propor-
tions between individual mice in our bulk transcriptomes, we esti-
mated cell proportions using a cell type deconvolution algorithm.
CIBERSORTxmodels (see theMaterials andMethods section)were
separately trained on two published single-cell RNA-seq datasets
from young and old mouse brains encompassing 1240 and 17 cells
types44, respectively.We used thesemodels to impute frequency of
these cell types inour bulkdata (Fig. S2C). Bothmodels predicted a
high proportion (~90%–95%) of neurons, followed by a small por-
tion of astrocytes (~5%). Importantly, when using the 12-cell type

model trained on Ogrodnik et al.40, we did not observe any sta-
tistically significant changes in cell type compositions between
old and young mice within our samples, while a small significant
change in astrocyte proportion was observed with the 17-cell type
model trained on Almanzar et al. (Tabula Morris Senis, 2020)44

(1.37% increase, adjusted p-value 0.019577). This minor increase
could explain the increased inflammatory pathways foundwith the
GSEA (see below) as expected for aged brain samples.

To complement this analysis, we performed GSEA to investigate
further the cellular processes altered with age (Table S6). GSEA
identified four major cellular processes that were altered upon
age. Downregulated genes were enriched for cell cycle, cell signal-
ing, and neurodevelopment processes, while upregulated genes
were enriched for immune response and inflammation (Fig. 2Cii;
Fig. S2D). Overall, our transcriptomic analysis confirmed an aging
transcriptional signature in the aged HCP samples.

Imprinting methylation is stable during aging
Next, we investigated how aging influences the fidelity of

genomic imprinting. This was made possible due to the use of
reciprocal BL6xCAST crosses to discern parent-of-origin from
genetic effects25,45. We first screened for imprinting methylation
using IMPLICON: an amplicon sequencing method measuring
DNAmethylation at several ICRs across the genome at the nucleo-
tide resolution with high coverage38. With this method, we are
also able to separate out paternal from maternal reads based on
SNPs between BL6 and CAST strains that are contained in
our amplicons and conserved during bisulfite conversion.
IMPLICON was successfully performed on 11 imprinted clusters
(10 ICRs and the exon1a promoter of Ddc gene) together with
two unmethylated and one methylated control regions
(Fig. 3A; Table S7) in HCP, CB, and lung of four young and
old female mice from both F1 BL6 × CAST reciprocal crosses.

Unmethylated (Klf4 and Sox2) and methylated (Prickle1) con-
trols showed low (<~10%) or high (>~90%) DNA methylation
levels, respectively, at both maternal and paternal alleles for all
tissues analyzed (Fig. S3A; Table S7), irrespective of age.
Importantly, DNA methylation at all ICRs analyzed was stably
maintained with age in the HCP, CB, and lung (Table S7). This
is illustrated for the maternally methylated Peg3 and Plagl1 loci
(Fig. 3Bii,3Cii), which showed> 90% DNA methylation of the
maternal allele and< 10% DNA methylation of the paternal
allele, irrespective of the genetic background (Fig. S3B).

We also examined DNA methylation consistency between indi-
vidual CpGs along individual reads using the IMPLICON method.
Reads were either fully unmethylated or methylated depending
on their parent of origin, independent of the genetic background.
This is exemplified for Peg3 and Plagl1 ICRs in HCP (Fig. 3Biii,
3Ciii). Taking advantage of the single nucleotide resolution of
IMPLICON, we also determined methylation levels at each CpG
within each genomic region with aging but did not observe con-
sistent and meaningful differences in the various tissues across
aging (Fig. S3C; Table S6).

|log2 (fold-change) |>1. (C) Transcriptional phenotypes of the aging HCP in mice. Heatmap plot of the differentially expressed genes (DEGs) of young
versus old hippocampi. Horizontal axis represents each mouse number ordered by age (light gray: young, total of six female mice; dark gray: old, total of
five femalemice). DEGs (n = 190 genes) determined byDESeq2 (Wald tests with BH adjustment of p-values)were selected by adjusted p-value < 0.05 and
|log2 (fold-change) |>1. Gradient of color from red to blue, denotes, respectively, up- and downregulated DEGs in young versus old HCP. (i) Examples of
genes that are UP or DOWN are shown on the right side of the heatmap. (ii) Dot plot showing representative GSEA pathways that were highly enriched
within ontology gene sets using DEGs determined above (M5 pathway collection from the mouse Molecular Signatures Database [MSigDB]). Pathways
are grouped into four groups where dot size represents the -log adj p-value for the enriched gene set. NES> 0 (red) indicates pathways enriched in old
mice and NES< 0 indicates depleted pathways in old mice (blue).
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Figure 3. IMPLICON reveals methylation stability at imprinted loci in the aging brain. (A) Schematic view of the murine karyotype depicting the
location of the regions studied by IMPLICON. Red and blue letters mark imprinted regions with maternally inherited and paternally inherited methyla-
tion, respectively, and violet and gray lettersmark control regions andDopa decarboxylase (Ddc) promoter, respectively. (B andC) IMPLICON analysis of
(B) Peg3 and (C) Plagl1 imprinted clusters in HCP, CB, and lung of four juvenile and four old F1 female mouse hybrids of C57Bl/6 J (BL6) and Cast/EiJ
(CAST) reciprocal crosses (two animals of each reciprocal cross per age group) measured by IMPLICON. Scheme on the left of each graph represents the
expected methylation status of each region. White lollipops, unmethylated CpGs; black lollipops, methylated CpGs; gray box, non-expressed gene; blue

(legend continued on next page)
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Using IMPLICON, we also checked themethylation levels of the
Dopa decarboxylase (Ddc) gene, which is involved in dopamine
biosynthesis, and often dysregulated in neurodegenerative and
psychiatric disorders49. Ddc transcripts are generally expressed
from both parental alleles in most of the body tissues and can also
exhibit isoform-, cell-, and development-specific imprinted
expression, including in the brain50,51. In our samples, the exon1a
promoter of the imprinted gene isoform of Ddc was not differen-
tially methylated between the parental alleles, nor throughout
aging, in HCP and CB, with methylation levels in two brain areas
being lower than in the lung (~50% vs. 90%) (Fig. S3Aiii).

Finally, we also extended our IMPLICON analysis to three addi-
tional brain regions: the nucleus accumbens, prefrontal cortex,
and hypothalamus. Similar to CB and HCP, these regions also
showed high fidelity of differential DNA methylation for the six
imprinting clusters and the control regions analyzed (Table
S8). In conclusion, our results suggest that imprinting methyla-
tion is stably maintained during aging for the loci and brain areas
investigated in this study.

The “Imprintome” of the young and old HCP
We next determined the “imprintome” of the aging mouse HPC

by taking advantage of our transcriptome dataset from F1 mice of
reciprocal crosses. In total, we identified 113 genes with parental-
of-origin monoallelic expression in young HCP, of which 66 were
maternally and 49 were paternally expressed. These genes were
located in 17 genomic regions that corresponded to known
imprinted regions (Fig. 4A,4B; Table S9).

Consistent with our IMPLICON results, RNAseq analysis
revealed stable imprinting expression during aging in HCP. For
example, Peg3, Usp29, Zim3, and Plagl1 genes are exclusively
paternally expressed in young and old HCP (Fig. 4Ci,4Cii; Fig.
S4A,S4B), while Ddc, which shows no differential methylation
between the parental alleles, is expressed fromboth alleles in both
young and old HPC (Fig. S4C). In contrast, its neighboring
imprinted gene Grb10 was consistently expressed from the pater-
nal allele as expected not only in young but also in oldHCP. In line
with the lack of aging-specific effects on genomic imprinting,
expression levels of genes implicated in imprinting maintenance
such as Dppa3, Trim28, Zfp445, or Zfp57 remained constant.
Although there was a tendency for decreased Zfp57 expression
in old HCP, this trend was not statistically significant (Fig. S4D).

More globally, when comparing old versus young ASE for
imprinted genes using DESeq2 method, we found four not previ-
ously reported imprinted genes (B230209E15Rik, Ube2nl,
A330076H08Rik, and A230057D06Rik) showing aging-specific
partial erosion of strict pattern ofmonoallelic expression (deviating
from a maternal:paternal ratio of ~0: ~100% in young to ~25:
~75% in old HPC) (Fig. 5A; Table S9). B230209E15Rik,
A330076H08Rik, and A230057D06Rik encode for noncoding
transcripts, while the pseudogene Ube2nl (Ubiquitin Conjugating
Enzyme E2 N Like) has 91% conservation with the gene encoding
for the multi-exonicubiquitin-conjugating enzyme E2N. Their loss
of strict monoallelic expression in old HCP had a minor impact in

the overall expression level of these genes (Fig. 5B) but was a con-
sistent feature of the aged HCP. All these genes are located within
the Prader-Willi syndrome/Angelman syndrome (PWS/AS)
imprinted cluster on chr7, with the Ube2nl pseudogene situated
within an intron of B230209E15Rik (Fig. 5C). They are normally
expressed from the paternal allele and are located between the
paternally expressed Snurf-Snrpn gene and the proximal side of
the cluster that includes Mkrn3, Magel2, and Ndn genes.
Interestingly, it is also in the PWS/AS locus, wherewefind the only
imprinted gene, Mkrn3 that is downregulated in old HPC, but, in
this case, does not alter its RNA allele-expression ratio (Fig. S5A).
In conclusion, these transcriptomic data are consistent with the
IMPLICON results and reveal remarkable stability of genomic
imprinting in physiological aging, with the rare exception of four
transcripts within the large PWS/AS imprinted cluster.

XCI in the aging brain
XCI is a dosage compensation mechanism that silences one of

the two X chromosomes in female mammalian cells31. We used
our RNAseq dataset, which includes young and old female F1
hybrid mice from reciprocal crosses, to examine the status of
XCI during aging process in HCP. First, we assessed the expression
levels of the long noncoding RNA Xist that is the master regulator
of XCI. There were no differences in Xist levels between young
and old HCP (Fig. 6A), consistent with reanalysis of data from
Hahn et al.39 in posterior and anterior HCP of aging female sam-
ples (Fig. S6A). Likewise, the expression of other noncoding
genes located on the X-inactivation center, such as Ftx, Jpx,
and Tsix, remained unchanged with aging, which contrasts with
the findings of a recent single nuclei RNAseq study36 (Fig. S6B).
Next, we explored the ASE of Xist and genes on the X chromosome
using BL6/CAST SNP information, to gain insights on potential
effects of aging on XCI. We observed a bias toward the expression
of the BL6 Xist allele irrespective of parental origin or age, with
some variation between individual animals (Fig. 6Bi,6Bii; Fig.
S6C). Increase in Xist expression from the BL6 allele resulted in
a concomitant reduction of expression from across the entire
BL6 X chromosome (Fig. 6Bi,6Bii). This suggested a preferential
inactivation of the BL6 X chromosome, which is consistent with
previous findings reporting a skew toward the inactivation of the
BL6 X chromosome in BL6-CAST hybrid female mice52. When
analyzing individual genes, we observed a decrease in the per-
centage of BL6 reads for X-linked genes such as Mecp2, Chic1,
Atrx, orHuwe1 (Fig. 6C; Fig. S6D). This was a generalized behav-
ior for all X-linked genes, which include escape genes such as
Eif2s3x and Kdm5c (Fig. S6E). Although they can be expressed
from both active and inactive X chromosomes (Fig. S6D), this pat-
tern suggests that escape genes are generally more prominently
expressed from the active X chromosome than from the inactive
one. Some genes evade this general allelic trend across the X
chromosome. For example, Pgk1 gene, traditionally used as a bio-
marker of X-inactivation status53,54, exhibits a strong preference
for the expression of the CAST allele. In contrast, Firre, a non-cod-
ing RNAwith an important role in conformational organization of

box, paternally expressed gene; Mat, maternal allele; Pat, paternal allele; regions are not drawn to scale. (i) Schematic representation not drawn to scale
of the Peg3 and Plagl1 imprinted clusters for Plagl1, in the scheme Hymai noncoding RNA is also represented, being an exon gene with the transcription
starting site from the same ICR promoter. (ii) Barplots represent the mean± SEM methylation levels measured at each CpG within different genomic
regions per parental allele in F1 female mice for CB, HCP, and lung. (iii) Descriptive plots displaying methylated (gray) and unmethylated CpGs (green)
for each CpG position (in columns) in all the individual reads (in rows) for both the ICR of both Peg3 and Plagl1 imprinted loci in the HCP of two young
and two old female mice from each reciprocal cross; NA, means not applicable, when methylation status was not retrieved.
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Figure 4. The “imprintome “of themurine HCP. (A) Schematic view of the murine karyotype depicting the location of the imprinted genes detected by
RNAseq in HCP. Maternally expressed imprinted genes are marked with red, while paternally expressed imprinted genes are marked with blue. Genes
marked with green are paternally expressed genes that erode with aging; for the sake of simplicity, small RNAs, such as microRNAs and snoRNAs, pseu-
dogenes and noncoding genes of unknown function are not represented, with the exception of the genes marked with green; the full list of imprinted
genes detected by RNAseq in HCP is provided in Table S9. (B)Heat map depicting the results of RNAseq transcriptomic analysis illustrating differential
parental-specific gene expression of HCP in young (n= 6) and old (n= 5) female mice (F1, n= 3 young and n= 3 old mice; reciprocal cross, n= 3 young
and n= 2 old mice). Color corresponds to per-gene allelic expression scores (maternal counts/total allelic counts), which are between 0 and 1,

(legend continued on next page)
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the Xi55,56, exhibited strong BL6 biased expression (Fig. S6E).
Finally, as a proxy for relaxation of XCI, we measured whether
there was any increase in gene activity from the X chromosome.
There was a marginal but not statistically significant increase
(Padj = 0.51) in the proportion of readsmapping to the X chromo-
some in aged HCP, consistent with what we observed for individ-
ual X-linked genes (Fig. 6D; Fig. S6B). Overall, our results suggest
that XCI is stable, with no signs of exacerbated skewing nor Xi
relaxation, during physiological aging of the HCP.

Discussion

In this study, we present the first allele-specific epigenetic and
transcriptional landscape of the agingmouse brain, with a specific
emphasis on the HCP. Using a combination of IMPLICON and
RNA sequencing analyses, our findings highlight the preservation
of genomic imprinting and the stability of XCI throughout the
natural aging process in the murine brain.

An epigenetic signature of aging has been implicated in the irre-
versible decline of organismalfitness and the onset of aging-related
illnesses57. Notably, epigenetic modifications, including DNA
methylation, undergo predictable changes over time, enabling
the estimation of biological age based on DNAmethylation “epige-
netic clocks”58. Whether these epigenetic-induced changes affect
maintenance ofmonoallelic expression including genomic imprint-
ing and XCI was not known and thus was the focus of this study.

One typical epigenetic feature associatedwith the aging brain is
the increase in 5hmC levels over time59. Indeed, 5hmC levels
increase markedly during lifespan, suggesting that 5hmC-medi-
ated epigenetic modification may be critical in neurodevelop-
ment and neurodegenerative disorders60,61. Our data confirmed
that 5hmC levels are higher in the brain than in peripheral tissues
and increases in the HCP with age, irrespective of biological
sex60,62 (Fig. 2A; Fig. S1A). Previous studies have similarly
reported age-associated increases in 5hmC in CB63–65. In our
study, we report a trend toward increased 5hmC levels in CB,
but it was not statistically significant, potentially due to the small
number of CB samples analyzed (Fig. 2A; Table S1). In the HCP,
the observed increased 5hmC signal during aging occurred in the
absence of any changes in 5mC levels, suggesting that 5hmC may
be acting as an epigenetic marker rather than an intermediary in
DNA demethylation19. Why 5hmC levels increase during aging in
the brain is not yet fully understood. One hypothesis may be that
5hmC levels increase as a compensatory mechanism in response
to age-induced changes due to cellular stress in the brain’s micro-
environment66,67. Increased 5hmC levels are generally associated
with the enhanced activity of Tet dioxygenases65; however,
expression level of these enzymes in HCP did not change over
time, consistent with previous studies68. This suggests that the
increase in 5hmC may not rely on expression levels but perhaps
be driven by altered enzymatic activity67. One interesting obser-
vation from our study was a decrease in Uhrf1 transcript levels

during aging. While Uhrf1 is primarily associated with the recog-
nition and maintenance of 5mC during DNA replication, it can
also interact with 5hmC and influence the recruitment of DNA
methyltransferases48,69. Interestingly, previous research has dem-
onstrated that loss of Uhrf1 leads to a global increase in 5hmC
levels47. However, the specific mechanism underlying this differ-
ential regulation between Uhrf1 and 5hmC remains unclear and
requires further investigation.

Our transcriptome analysis identified both up- and downregu-
lated transcripts in the aged HCP. Notably, we found higher
expression of genes related to inflammation and immune
responses, while genes involved in cellular cycle progression,
neurodevelopmental processes, and active signaling pathways
displayed reduced expression levels (Fig. 2Cii; Fig. S2B). As pre-
viously reported70,71, the upregulation of inflammatory path-
ways68 and the downregulation of genes involved in pathways
of growth factor signaling, encoding mitochondrial proteins
and protein synthesis machinery71 are common characteristics
of aging in the brain. Interestingly, we observed canonical Wnt
(Wnt/β-catenin) signaling to be dysregulated with aging.
Increasing evidence indicates that Wnt signaling regulates multi-
ple aspects of adult hippocampal neurogenesis72 as well as neural
function and synaptic connectivity73 and downregulation of Wnt
signaling could be involved in the cognitive decline associated
with aging and Alzheimer’s disease74.

Our CIBERSORTx deconvolution analysis using two indepen-
dent single-cell datasets40,44 (Fig. S2C) revealed that the neural
population of our hippocampal samples was notably high
(~90%–95%) and did not vary in proportion between young
and old HCP. There was a small increase in astrocyte proportions
when using the single-cell dataset of the aging whole brain from
The Tabula Muris Consortium as the reference44 (right panel,
Fig. S2C). Future studies with larger datasets will enable gene
expression estimations for major cell types estimated by
CIBERSORTx, providing a deeper understanding of cell-type-
specific gene expression changes. Together, our transcriptome
analysis aligns with previous studies36,75 and matches other aging
RNAseq datasets40,44, suggesting a consistent and generalized
pattern of gene expression changes associated with aging.

Genomic imprinting is an enduring form of epigenetic inherit-
ance established in parental germ cells and maintained throughout
an organism’s development24. In the central nervous system,
imprinting is important for neurogenesis, brain function, and
behavior27 and dysregulation of imprinting results in neurodeve-
lopmental and behavioral disorders such as PWS/AS24,29. In accor-
dance, the brain, especially neurons, consistently shows a high
number of expressed imprinted genes in adulthood18,76,77.
A detailed investigation of imprinted gene expression in the
aging HCP was yet to be performed, despite the previous asso-
ciation between imprinting methylation and hippocampal vol-
ume in aging78. Recent evidence suggested that imprints can be
dysregulated by environmental insults during critical periods of

scores > 0.5 (red) or< 0.5 (blue) represent genes with a maternal or paternal expression bias, whereas those with ~0.5 represent genes with bi-allelic
expression. Only genes were hierarchically clustered based on these allelic ratios using euclidean distance and ward D2-based clustering. The scales on
the bottom show the color codes for allelic expression levels. Examples of genes with maternal or paternal allelic expression biases are annotated on the
right side of the heatmap. (C) Boxplot representing median ASE of the parental allele of the (i) Peg3, Usp29, and Zim3 and (ii) Plagl1, imprinted genes in
the HCP of young (n= 6) and old (n= 5) female mice measured by RNAseq (DESeq2, P adj< 0.05, log2FC > 1). Boxplot boundaries indicate the lower
(first) and upper (third) quartiles of allele expression ratios, with themiddle line indicating themedian value. Scheme on top of each graph represents the
expected methylation status of Peg3 and Plagl1 imprinted regions. White lollipops, unmethylated CpGs; black lollipops, methylated CpGs; gray box, non-
expressed gene; blue box, paternally expressed gene; Mat, maternal allele; Pat, paternal allele; regions are not drawn to scale.
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Figure 5. Loss of strict monoallelic expression of three imprinted noncoding genes within the Prader-Willi syndrome/Angelman syndrome
(PWS/AS) locus. (A) On the left, dotplot detecting the allelic expression changes between young and old HPC on the newly reported imprinted genes
(B230209E15Rik, Ube2nl, A330076H08Rik, and A230057D06Rik) located PWS/AS locus using DESeq2 (Wald test and BH adjustment of p-values)
method comparing old versus young (P adj < 0.05, |log2FC|> 1). The log2FC represents the change in allele expression ratios between old and young
mice for each gene. log2FC<−1 represents those genes that lose ASE, whereas log2FC > 1 represents those genes that have gained ASE. On the right,

(legend continued on next page)
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embryonic/fetal development79–81 with long-term conse-
quences in tissue function and susceptibility to age-related
diseases25,76. Whether imprinting in the brain is also suscep-
tible to changes as a function of aging has not been addressed
previously in a systematic way.

Using our allele-specific IMPLICON method, we observed a
consistent DNA methylation pattern across 11 imprinted regions
in the HCP, CB, and lung tissues of both young and old F1 mice as
well as in their reciprocal crosses. However, we also noted that
certain CpGs exhibited either increased or decreased methyla-
tion. Whether this is attributed to experimental noise or indeed
has biological meaning would require further investigation.
Because IMPLICON used bisulfite treatment, it cannot distinguish
between 5mC and 5hmC, and so we were unable to address the
potential impact of the aging-specific increase in 5hmC on
imprinted regions. To tease apart 5mC and 5hmC levels at
imprinting or other regions, novel techniques can now be applied
such as Tet-assisted bisulfite sequencing (TAB-seq)82 and oxida-
tive bisulfite sequencing (oxBS-seq)83 or emerging direct detec-
tion and single-cell methods82 to start addressing the potential
role of 5hmC at imprinted regions during aging.

We also assessed age-related allele-specific transcriptional
changes in the HCP in our RNAseq dataset, documenting 113 cod-
ing and non-coding genes with parental allelic expression in the
HCP across aging. In line with our IMPLICON findings, imprinted
gene expression remained stable throughout the aging process.
While we cannot rule out dysregulation of imprinting in the con-
text of age-onset diseases or following environmental insults84,85,
our findings show stable parental-of-origin DNAmethylation and
transcription at imprinted loci during physiological aging of the
brain. One caveat in our analysis is the absence of single-cell res-
olution, which masks the existence of other imprinted genes that
may exhibit cell-type-specific imprinting. This may indeed be the
case of Ddc gene belonging to the Grb10 imprinted locus
on chr11, which we postulated to undergo transcriptional or
imprinting regulation upon aging and thus influencing dopamine
production50,51,86. Single-cell techniques, such as scRNAseq,
would be required to disclose the full “imprintome” of HCP during
aging. Bulk RNA-seq, performed by us in this study, remains the
gold standard in studying global trends in monoallelic expression
in a wide range of different contexts25 due to its reproducibility,
scalability, and cost effectiveness. However, it cannot uncover
more subtle changes unique to specific cell types or states.
Over the past few decades, the landscape of single-cell RNA-seq
(scRNA-seq) methods has experienced rapid evolution with con-
stant improvement in sensitivity, throughput, and reproducibil-
ity. For accurately quantifying ASE in single cells, well-based
methods (e.g., Smart-seq2/3) have been preferred87. For
instance, ASE quantification by scRNA-seq has been used to elu-
cidate the degree of XCI escape across human tissues88, the
dynamics of X-chromosome silencing89, or to unravel dosage
compensation mechanisms in mammalian preimplantation
development90. Importantly, scRNA-seq will be crucial to under-
stand the true extent of ASE in different cell types and states87.

Technological improvements, including long-read single-cell
RNAseq, will help overcome current challenges in ASE quantifi-
cation using scRNA-seq including limitations in analyzing low-
abundance transcripts, sequencing drop outs, and scalability lim-
itations. Alternatively, cell sorting of different cell populations
followed by bulk RNA sequencing has the potential to reveal
subtle changes in allelic expression during aging that may be spe-
cific to particular cell types. In particular, this would enable detec-
tion of allelic expression changes that occur in opposite directions
in different cell types91, which might otherwise be obscured by
using whole tissue preparations as we did in this study.

Although our data strongly point for an enduring stability of
genomic imprinting in the aging brain, an exception was found
for four novel non-coding transcripts at the PWS/AS imprinted
locus on mouse chr7 that lost strict monoallelic expression
upon aging: B230209E15Rik, Ube2nl, A330076H08Rik, and
A230057D06Rik. These transcripts are strongly expressed in
brain tissues; however, their exact function is currently unknown.
The most enigmatic of them all is Ube2nl, an intronless pseudo-
gene with an open reading frame derived from the Ube2n (ubiq-
uitin-conjugating enzyme E2N) gene on mouse chr10. While we
observed consistent allele biases changes in the aged HCP for
these genes, this did not translate into overall gene expression
changes. Functional studies will be needed to understand the role
of these transcripts inmouse development and aging andwhether
the syntenic region in humans is also sensitive to aging-specific
effect on imprinting regulation.

We also investigated changes in XCI during aging process and
did not observe any differences in our dataset (Fig. 6A) or the
RNAseq dataset from Hanh et al.39 (Fig. S6A). The same observa-
tion extended to other genes on the X-inactivation center, Ftx,
Jpx, and Tsix which also did not change with aging (Fig. S6B).
Our findings contrast recent single nuclei RNA sequencing results
indicating unexpected Xist upregulation in the hypothalamus and
to some extent in the HCP36, although these findings were not
validated by other molecular techniques, nor did it reflect overall
global differences in the activity of the X chromosome. This dis-
parity might be explained by the technical differences between
bulk RNAseq protocols versus the single nuclei RNA-seq, or in
the different brain regions being analyzed. For instance, in the
aforementioned study, XIST upregulation was more extreme in
the hypothalamus compared with the HCP. Taking advantage
of our biological system, where we can discriminate the two X-
chromosomes, we mined our RNAseq dataset resource to learn
more about the endurance of XCI through aging. Our data
revealed a skewing of XCI toward the BL6 chrX for 10 out of
11mice (Fig. 6Bii), consistent with previous studies52. This effect
was not age specific, which contrasts with the hematopoietic sys-
tem for which aging-mediated enhanced skewing has been
reported33,92. This may be explained by the differences in cell
cycle turnover, which is much higher during hematopoiesis than
neurogenesis. Likewise, no signs of relaxation of XCI were
observed in the aging HCP (Fig. 6D), which contrasts with the
reported, albeit very subtle, alterations observed in the

boxplots represent the median allelic expression ratio of the parental alleles for the genes B230209E15Rik, Ube2nl, A330076H08Rik, and
A230057D06Rik in young (n= 6) and old (n= 5) female HCP. Boxplot boundaries indicate the lower (first) and upper (third) quartiles of allele expres-
sion ratios, with the middle line indicating the median value. (B) Bulk expression levels of B230209E15Rik, Ube2nl, A330076H08Rik, and
A230057D06Rik of young and old hippocampi. (C) Representative image of the PWS/AS locus in the mouse chr7 and RNA-seq allelic tracks represen-
tation (red=maternal, blue= paternal), two young and two oldmicewere chosen for display (eachmouse from reciprocal cross), showing the location of
the three novel imprinted genes differentially modulated in aged HCP region in square indicates the Ube2nl/B230209E15Rik (B23)/A230057D06Rik/
A330076H08Rik (A23) locus within the PWS/AS region, where expression from the maternal allele becomes evident in the older mice.
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Figure 6. Stability of X-chromosome inactivation in the aged HCP. (A) Expression levels of X-inactive-specific-transcript (Xist) long noncoding RNA
in young (n= 6) and old (n= 5) female mice in log10(TPM + 1) (transcripts per million) measured by RNAseq. (B) ASE ratio of Xist gene and the entire
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hematopoietic system34,35. While it is essential to acknowledge
the potential for subtle effects on XCI stability with a larger sam-
ple size, our findings unequivocally indicate that XCI is remark-
able resilience to physiological aging of the HCP.

Our study represents a comprehensive investigation of the allele-
specific DNA methylation and transcriptional landscape of the
aging brain.While we focused on genomic imprinting and XCI, this
dataset holds promise for exploring othermonoallelic-specific phe-
nomena that may be relevant to aging. We acknowledge the limi-
tations in our study including the exclusive focus on female mice
and the relatively small cohort of animals. This decision stemmed
from ethical considerations and was justified as a reduced number
of mice are needed when working with an isogenic setting where
all animals share an identical genotype in controlled conditions. It
is worth noting that although our F1 hybrid mice from reciprocal
crosses could be seen as a subgroup within the young and old
groups, our findings (Figs. S1B, S3B, and S4A,S4B) indicate that
they did not differ within these age groups. Hence, we were able to
have n= 4 young/old animals for the IMPLICON and n>= 5
young/old animals for the RNAseq analysis. Comparable numbers
of mice have been used in similar aging studies (~5 femalemice in
Hahn et al.39). Reassuringly, our study replicated aging expression
changes found in other studies (Figs. S2C and S5A; Table S5).
Nonetheless, we cannot exclude that subtle or cell-specific changes
in genomic imprinting and XCI might have been detected if a big-
ger number of animals have been analyzed. In addition, the female
animals used in our study were not synchronized for the estrous
cycle. Synchronization procedures are challenging to implement
in long-term experiments and require increased number of animals
and may introduce additional variables affecting reproducibility.
Lack of synchronization for the estrous cycle is unlikely to have
a major impact on the objectives of our study in elucidating the
monoallelic status of genes in the aging brain as the vast majority
of known imprinted genes remained strictly monoallelically
expressed in all animal samples independently of their age and
reciprocal cross (Fig. 4C; Fig. S4A,B).

In conclusion, our findings support the remarkable resilience of
genomic imprinting and XCI in the face of epigenetic changes
observed during healthy aging of the brain, providing advances
beyond what has been previously achieved. The stability of these
epigenetic processes with aging suggests their importance in pre-
serving essential cellular functions throughout an entire individ-
ual’s lifespan.
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